[1]

Zhang J, Liu C, Xu J. 2024. Earth critical zone: a comprehensive exploration of the earth's surface processes. Earth Critical Zone 1:100001

doi: 10.1016/j.ecz.2024.100001
[2]

Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, et al. 2010. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology 44:15−23

doi: 10.1021/es9026248
[3]

Peiffer S, Kappler A, Haderlein S B, Schmidt C, Byrne J M, et al. 2021. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience 14:264−272

doi: 10.1038/s41561-021-00742-z
[4]

Lacroix EM, Aeppli M, Boye K, Brodie E, Fendorf S, et al. 2023. Consider the anoxic microsite: acknowledging and appreciating spatiotemporal redox heterogeneity in soils and sediments. ACS Earth and Space Chemistry 7:1592−1609

doi: 10.1021/acsearthspacechem.3c00032
[5]

Kuzyakov Y, Blagodatskaya E. 2015. Microbial hotspots and hot moments in soil: concept & review. Soil Biology and Biochemistry 83:184−199

doi: 10.1016/j.soilbio.2015.01.025
[6]

Fang Q, Lu A, Hong H, Kuzyakov Y, Algeo T J, et al. 2023. Mineral weathering is linked to microbial priming in the critical zone. Nature Communications 14:345

doi: 10.1038/s41467-022-35671-x
[7]

Wallis I, Prommer H, Berg M, Siade AJ, Sun J, et al. 2020. The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience 13:288−295

doi: 10.1038/s41561-020-0557-6
[8]

Wei Y, Chen Y, Cao X, Xiang M, Huang Y, et al. 2024. A Critical review of groundwater table fluctuation: formation, effects on multifields, and contaminant behaviors in a soil and aquifer system. Environmental Science & Technology 58:2185−2203

doi: 10.1021/acs.est.3c08543
[9]

Yabusaki SB, Wilkins MJ, Fang Y, Williams KH, Arora B, et al. 2017. Water table dynamics and biogeochemical cycling in a shallow, variably-saturated floodplain. Environmental Science & Technology 51:3307−3317

doi: 10.1021/acs.est.6b04873
[10]

Yanina SV, Rosso KM. 2008. Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320:218−222

doi: 10.1126/science.1154833
[11]

Fang Z, Huang Y, Tang S, Fan Q, Zhang Y, et al. 2024. Direct interspecies electron transfer for environmental treatment and chemical electrosynthesis: a review. Environmental Chemistry Letters 22:3107−3133

doi: 10.1007/s10311-024-01774-8
[12]

Lovley DR. 2017. Syntrophy goes electric: direct interspecies electron transfer. Annual Review of Microbiology 71:643−664

doi: 10.1146/annurev-micro-030117-020420
[13]

Shi L, Dong H, Reguera G, Beyenal H, Lu A, et al. 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14:651−662

doi: 10.1038/nrmicro.2016.93
[14]

Malvankar NS, King GM, Lovley DR. 2015. Centimeter-long electron transport in marine sediments via conductive minerals. The ISME Journal 9:527−531

doi: 10.1038/ismej.2014.131
[15]

Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, et al. 2012. Filamentous bacteria transport electrons over centimetre distances. Nature 491:218−221

doi: 10.1038/nature11586
[16]

Bai Y, Sun T, Angenent LT, Haderlein S B. Kappler A. 2020. Electron hopping enables rapid electron transfer between quinone-/hydroquinone-containing organic molecules in microbial iron(III) mineral reduction. Environmental Science & Technology 54:10646−10653

doi: 10.1021/acs.est.0c02521
[17]

Bai Y, Mellage A, Cirpka OA, Sun T, Angenent L T, et al. 2020. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environmental Science & Technology 54:4131−4139

doi: 10.1021/acs.est.9b07134
[18]

Bai Y, Sun T, Mansor M, Joshi P, Zhuang Y, et al. 2023. Networks of dissolved organic matter and organo-mineral associations stimulate electron transfer over centimeter distances. Environmental Science & Technology Letters 10:493−498

doi: 10.1021/acs.estlett.3c00172
[19]

Zhang Y, Tong M, Lu Y, Zhao F, Zhang P, et al. 2024. Directional long-distance electron transfer from reduced to oxidized zones in the subsurface. Nature Communications 15:6576

doi: 10.1038/s41467-024-50974-x
[20]

Paquete CM, Fonseca BM, Cruz DR, Pereira TM, Pacheco I, et al. 2014. Exploring the molecular mechanisms of electron shuttling across the microbe/metal space. Frontiers in Microbiology 5:318

doi: 10.3389/fmicb.2014.00318
[21]

Dong H, Zeng Q, Sheng Y, Chen C, Yu G, et al. 2023. Coupled iron cycling and organic matter transformation across redox interfaces. Nature Reviews Earth & Environment 4:659−673

doi: 10.1038/s43017-023-00470-5
[22]

Lovley DR. 2012. Electromicrobiology. Annual Review of Microbiology 66:391−409

doi: 10.1146/annurev-micro-092611-150104
[23]

Klüpfel L, Piepenbrock A, Kappler A. Sander M. 2014. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nature Geoscience 7:195−200

doi: 10.1038/ngeo2084
[24]

Huang JZ, Jones A, Waite TD, Chen YL, Huang XP, et al. 2021. Fe(II) redox chemistry in the environment. Chemical Reviews 121:8161−8233

doi: 10.1021/acs.chemrev.0c01286
[25]

Lovley DR, Holmes DE. 2022. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms. Nature Reviews Microbiology 20:5−19

doi: 10.1038/s41579-021-00597-6
[26]

Kappler A, Bryce C, Mansor M, Lueder U, Byrne J M, et al. 2021. An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology 19:360−374

doi: 10.1038/s41579-020-00502-7
[27]

Melton ED, Swanner ED, Behrens S, Schmidt C, Kappler A. 2014. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nature Reviews Microbiology 12:797−808

doi: 10.1038/nrmicro3347
[28]

Cutting RS, Coker VS, Fellowes JW, Lloyd JR, Vaughan DJ. 2009. Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta 73:4004−4022

doi: 10.1016/j.gca.2009.04.009
[29]

Emerson D, Fleming EJ, McBeth JM. 2010. Iron-oxidizing bacteria: an environmental and genomic perspective. Annual Review of Microbiology 64:561−583

doi: 10.1146/annurev.micro.112408.134208
[30]

Ai Z, Gao Z, Zhang L, He W, Yin JJ. 2013. Core-shell structure dependent reactivity of Fe@Fe2O3 nanowires on aerobic degradation of 4-chlorophenol. Environmental Science & Technology 47:5344−5352

doi: 10.1021/es4005202
[31]

Usman M, Byrne JM, Chaudhary A, Orsetti S, Hanna K, et al. 2018. Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals. Chemical Reviews 118:3251−3304

doi: 10.1021/acs.chemrev.7b00224
[32]

Byrne JM, Klueglein N, Pearce C, Rosso KM, Appel E, et al. 2015. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347:1473−1476

doi: 10.1126/science.aaa4834
[33]

Danielsen KM, Hayes KF. 2004. pH dependence of carbon tetrachloride reductive dechlorination by magnetite. Environmental Science & Technology 38:4745−4752

doi: 10.1021/es0496874
[34]

Jiang W, Cai Q, Xu W, Yang M, Cai Y, et al. 2014. Cr(VI) adsorption and reduction by humic acid coated on magnetite. Environmental Science & Technology 48:8078−8085

doi: 10.1021/es405804m
[35]

Fan Q, Wang L, Fu Y, Li Q, Liu Y, et al. 2023. Iron redox cycling in layered clay minerals and its impact on contaminant dynamics: A review. Science of The Total Environment 855:159003

doi: 10.1016/j.scitotenv.2022.159003
[36]

Yu C, Qian A, Lu Y, Liao W, Zhang P, et al. 2024. Electron transfer processes associated with structural Fe in clay minerals. Critical Reviews in Environmental Science and Technology 54:13−38

doi: 10.1080/10643389.2023.2221154
[37]

Qian A, Lu Y, Zhang Y, Yu C, Zhang P, et al. 2023. Mechanistic insight into electron transfer from Fe(II)-bearing clay minerals to Fe(hydr)oxides. Environmental Science & Technology 57:8015−8025

doi: 10.1021/acs.est.3c01250
[38]

Komadel P, Madejová J, Stucki JW. 2006. Structural Fe(III) reduction in smectites. Applied Clay Science 34:88−94

doi: 10.1016/j.clay.2005.10.016
[39]

Hofstetter TB, Anke Neumann A, Schwarzenbach RP. 2006. Reduction of nitroaromatic compounds by Fe(II) species associated with iron-rich smectites. Environmental Science & Technology 40:235−242

doi: 10.1021/es0515147
[40]

Neumann A, Hofstetter TB, Skarpeli-Liati M, Schwarzenbach RP. 2009. Reduction of polychlorinated ethanes and carbon tetrachloride by structural Fe(II) in smectites. Environmental Science & Technology 43:4082−4089

doi: 10.1021/es9001967
[41]

Qafoku O, Pearce CI, Neumann A, Kovarik L, Zhu M, et al. 2017. Tc(VII) and Cr(VI) interaction with naturally reduced ferruginous smectite from a redox transition zone. Environmental Science & Technology 51:9042−9052

doi: 10.1021/acs.est.7b02191
[42]

Gorski CA, Klüpfel LE, Voegelin A, Sander M, Hofstetter TB. 2013. Redox properties of structural Fe in clay minerals: 3. relationships between smectite redox and structural properties. Environmental Science & Technology 47:13477−13485

doi: 10.1021/es403824x
[43]

Cui S, Wang R, Chen Q, Pugliese L, Wu S. 2024. Geobatteries in environmental biogeochemistry: Electron transfer and utilization. Environmental Science and Ecotechnology 22:100446

doi: 10.1016/j.ese.2024.100446
[44]

Guerbois D, Ona-Nguema G, Morin G, Abdelmoula M, Laverman AM, et al. 2014. Nitrite Reduction by biogenic hydroxycarbonate green rusts: evidence for hydroxy-nitrite green rust formation as an intermediate reaction product. Environmental Science & Technology 48:4505−4514

doi: 10.1021/es404009k
[45]

Patterson RR, Fendorf S, Fendorf M. 1997. Reduction of hexavalent chromium by amorphous iron sulfide. Environmental Science & Technology 31:2039−2044

doi: 10.1021/es960836v
[46]

Parsons JW. 1983. Humus chemistry: genesis, composition, reactions. Soil Science 135:129−130

doi: 10.1097/00010694-198302000-00014
[47]

Scott DT, McKnight DM, Blunt-Harris EL, Kolesar SE, Lovley DR. 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental Science & Technology 32:372−372

doi: 10.1021/es980272q
[48]

Struyk Z, Sposito G. 2001. Redox properties of standard humic acids. Geoderma 102:329−346

doi: 10.1016/S0016-7061(01)00040-4
[49]

Aeschbacher M, Sander M, Schwarzenbach RP. 2010. Novel electrochemical approach to assess the redox properties of humic substances. Environmental Science & Technology 44:87−93

doi: 10.1021/es902627p
[50]

Aeschbacher M, Vergari D, Schwarzenbach RP, Sander M. 2011. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environmental Science & Technology 45:8385−8394

doi: 10.1021/es201981g
[51]

Sedenho GC, Porcellinis DD, Jing Y, Kerr E, Mejia-Mendoza LM, et al. 2020. Effect of molecular structure of quinones and carbon electrode surfaces on the interfacial electron transfer process. ACS Applied Energy Materials 3:1933−1943

doi: 10.1021/acsaem.9b02357
[52]

Bauer I, Kappler A. 2009. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environmental Science & Technology 43:4902−4908

doi: 10.1021/es900179s
[53]

Roden EE, Kappler A, Bauer I, Jiang J, Paul A, et al. 2010. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience 3:417−421

doi: 10.1038/ngeo870
[54]

Kappler A, Benz M, Schink B, Brune A. 2004. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment. FEMS Microbiology Ecology 47:85−92

doi: 10.1016/S0168-6496(03)00245-9
[55]

Collins R, Picardal F. 1999. Enhanced anaerobic transformations of carbon tetrachloride by soil organic matter. Environmental Toxicology and Chemistry 18:2703−2710

doi: 10.1002/etc.5620181208
[56]

Kappler A, Haderlein SB. 2003. Natural organic matter as reductant for chlorinated aliphatic pollutants. Environmental Science & Technology 37:2714−2719

doi: 10.1021/es0201808
[57]

Dunnivant FM, Schwarzenbach RP, Macalady DL. 1992. Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter. Environmental Science & Technology 26:2133−2141

doi: 10.1021/es00035a010
[58]

Zhang Y, Zhang N, Qian A, Yu C, Zhang P, et al. 2022. Effect of C/Fe molar ratio on H2O2 and •OH production during oxygenation of Fe(II)-humic acid coexisting systems. Environmental Science & Technology 56:13408−13418

doi: 10.1021/acs.est.2c01312
[59]

Page SE, Michael S, Arnold WA, Kristopher MN. 2012. Hydroxyl radical formation upon oxidation of reduced humic acids by oxygen in the dark. Environmental Science & Technology 46:1590−1597

doi: 10.1021/es203836f
[60]

Lovley DR, Holmes DE, Nevin KP. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Advances in Microbial Physiology 49:219−286

doi: 10.1016/S0065-2911(04)49005-5
[61]

Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, et al. 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences of the United States of America 105:3968−3973

doi: 10.1073/pnas.0710525105
[62]

Canstein HV, Ogawa J, Shimizu S, Lloyd JR. 2008. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Applied and Environmental Microbiology 74:615−623

doi: 10.1128/AEM.01387-07
[63]

Weber KA, Achenbach LA, Coates JD. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4:752−764

doi: 10.1038/nrmicro1490
[64]

Alley WM, Healy RW, Labaugh JW, Reilly TE. 2002. Flow and storage in groundwater systems. Science 296:1985−1990

doi: 10.1126/science.1067123
[65]

Safeeq M, Fares A. 2016. Groundwater and surface water interactions in relation to natural and anthropogenic environmental changes. In Emerging Issues in Groundwater Resources. Advances in Water Security, ed. Fares A. Cham: Springer. pp. 289–326 doi: 10.1007/978-3-319-32008-3_11

[66]

Cui S, Liu P, Guo H, Nielsen CK, Pullens JWM, et al. 2024. Wetland hydrological dynamics and methane emissions. Communications Earth & Environment 5:470

doi: 10.1038/s43247-024-01635-w
[67]

Zhang N, Bu X, Li Y, Zhang Y, Yuan S, et al. 2020. Water table fluctuations regulate hydrogen peroxide production and distribution in unconfined aquifers. Environmental Science & Technology 54:4942−4951

doi: 10.1021/acs.est.0c00487
[68]

Bu X, Dai H, Yuan S, Zhu Q, Li X, et al. 2021. Model-based analysis of dissolved oxygen supply to aquifers within riparian zones during river level fluctuations: dynamics and influencing factors. Journal of Hydrology 598:126460

doi: 10.1016/j.jhydrol.2021.126460
[69]

Wang Y, Wang H, He J, Feng X. 2017. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications 8:15972

doi: 10.1038/ncomms15972
[70]

Wu Y, Jiang X, Yao Y, Kang X, Niu Y, et al. 2024. Effect of rainfall–runoff process on sources and transformation of nitrate at the urban catchment scale. Urban Climate 53:101805

doi: 10.1016/j.uclim.2024.101805
[71]

Armstrong W. 1971. Radial oxygen losses from intact rice roots as affected by distance from the apex, respiration and waterlogging. Physiologia Plantarum 25:192−197

doi: 10.1111/j.1399-3054.1971.tb01427.x
[72]

Dias DMC, Copeland JM, Milliken CL, Shi X, Ferry JL, et al. 2016. Production of reactive oxygen species in the rhizosphere of a spartina-dominated salt marsh systems. Aquatic Geochemistry 22:573−591

doi: 10.1007/s10498-016-9307-1
[73]

Haberer C M, Rolle M, Liu S, Cirpka OA, Grathwohl P. 2011. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater. Journal of Contaminant Hydrology 122:26−39

doi: 10.1016/j.jconhyd.2010.10.006
[74]

Ferencz SB, Cardenas MB, Neilson BT. 2019. Analysis of the effects of dam release properties and ambient groundwater flow on surface water-groundwater exchange over a 100-km-long reach. Water Resources Research 55:8526−8546

doi: 10.1029/2019WR025210
[75]

Zhu M, Wang S, Kong X, Zheng W, Feng W, et al. 2019. Interaction of surface water and groundwater influenced by groundwater over-extraction, waste water discharge and water transfer in Xiong’an new area, China. Water 11:539

doi: 10.3390/w11030539
[76]

Devi P, Das U, Dalai AK. 2016. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Science of The Total Environment 571:643−657

doi: 10.1016/j.scitotenv.2016.07.032
[77]

Baciocchi R, D'Aprile L, Innocenti I, Massetti F, Verginelli I. 2014. Development of technical guidelines for the application of in-situ chemical oxidation to groundwater remediation. Journal of Cleaner Production 77:47−55

doi: 10.1016/j.jclepro.2013.12.016
[78]

Chen C, Kukkadapu RK, Lazareva O, Sparks DL. 2017. Solid-phase Fe speciation along the vertical redox gradients in floodplains using XAS and Mössbauer spectroscopies. Environmental Science & Technology 51:7903−7912

doi: 10.1021/acs.est.7b00700
[79]

Janot N, Lezama Pacheco JS, Pham DQ, O'Brien TM, Hausladen D, et al. 2016. Physico-chemical heterogeneity of organic-rich sediments in the Rifle aquifer, CO: impact on uranium biogeochemistry. Environmental Science & Technology 50:46−53

doi: 10.1021/acs.est.5b03208
[80]

Campbell KM, Kukkadapu RK, Qafoku NP, Peacock AD, Lesher E, et al. 2012. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer. Applied Geochemistry 27:1499−1511

doi: 10.1016/j.apgeochem.2012.04.013
[81]

Noël V, Boye K, Kukkadapu RK, Bone S, Lezama Pacheco JS, et al. 2017. Understanding controls on redox processes in floodplain sediments of the Upper Colorado River Basin. Science of The Total Environment 603–604:663−675

doi: 10.1016/j.scitotenv.2017.01.109
[82]

Kumar N, Noël V, Planer-Friedrich B, Besold J, Lezama-Pacheco J, et al. 2020. Redox heterogeneities promote thioarsenate formation and release into groundwater from low arsenic sediments. Environmental Science & Technology 54:3237−3244

doi: 10.1021/acs.est.9b06502
[83]

Engel M, Boye K, Noël V, Babey T, Bargar JR, et al. 2021. Simulated aquifer heterogeneity leads to enhanced attenuation and multiple retention processes of zinc. Environmental Science & Technology 55:2939−2948

doi: 10.1021/acs.est.0c06750
[84]

Aeppli M, Babey T, Engel M, Lacroix EM, Tolar BB, et al. 2022. Export of organic carbon from reduced fine-grained zones governs biogeochemical reactivity in a simulated aquifer. Environmental Science & Technology 56:2738−2746

doi: 10.1021/acs.est.1c04664
[85]

Engel M, Noël V, Kukkadapu RK, Boye K, Bargar JR, et al. 2022. Nitrate controls on the extent and type of metal retention in fine-grained sediments of a simulated aquifer. Environmental Science & Technology 56:14452−14461

doi: 10.1021/acs.est.2c03403
[86]

Bone SE, Cahill MR, Jones ME, Fendorf S, Davis J, et al. 2017. Oxidative uranium release from anoxic sediments under diffusion-limited conditions. Environmental Science & Technology 51:11039−11047

doi: 10.1021/acs.est.7b02241
[87]

Wang H, Zhu Y, Lu Y, Bu X, Zhu Q, et al. 2024. Reduction capacity in the transmissive zones fueled by the embedded low-permeability lenses: Implications for contaminant transformation in heterogeneous aquifers. Water Research 260:121955

doi: 10.1016/j.watres.2024.121955
[88]

Page SE, Kling GW, Sander M, Harrold KH, Logan JR, et al. 2013. Dark formation of hydroxyl radical in Arctic soil and surface waters. Environmental Science & Technology 47:12860−12867

doi: 10.1021/es4033265
[89]

Zhang Y, Zhang N, Yu C, Liu H, Yuan S. 2023. ROS production upon groundwater oxygenation: implications of oxidative capacity during groundwater abstraction and discharging. Journal of Hydrology 620:129551

doi: 10.1016/j.jhydrol.2023.129551
[90]

Trusiak A, Treibergs LA, Kling GW, Cory RM. 2018. The role of iron and reactive oxygen species in the production of CO2 in arctic soil waters. Geochimica et Cosmochimica Acta 224:80−95

doi: 10.1016/j.gca.2017.12.022
[91]

Yu C, Zhang Y, Lu Y, Qian A, Zhang P, et al. 2021. Mechanistic insight into humic acid-enhanced hydroxyl radical production from Fe(II)-bearing clay mineral oxygenation. Environmental Science & Technology 55:13366−13375

doi: 10.1021/acs.est.1c02461
[92]

Cheng D, Yuan S, Liao P, Zhang P. 2016. Oxidizing impact induced by mackinawite (FeS) nanoparticles at oxic conditions due to production of hydroxyl radicals. Environmental Science & Technology 50:11646−11653

doi: 10.1021/acs.est.6b02833
[93]

Zhang P, Yuan S, Liao P. 2016. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions. Geochimica et Cosmochimica Acta 172:444−457

doi: 10.1016/j.gca.2015.10.015
[94]

Zhao G, Tan M, Wu B, Zheng X, Xiong R, et al. 2023. Redox oscillations activate thermodynamically stable iron minerals for enhanced reactive oxygen species production. Environmental Science & Technology 57:8628−8637

doi: 10.1021/acs.est.3c02302
[95]

Kappler A, Straub K L. 2005. Geomicrobiological cycling of iron. Reviews in Mineralogy and Geochemistry 59:85−108

doi: 10.2138/rmg.2005.59.5
[96]

Dong H, Jaisi DP, Kim J, Zhang G. 2009. Microbe-clay mineral interactions. American Mineralogist 94:1505−1519

doi: 10.2138/am.2009.3246
[97]

Sharma N, Wang Z, Catalano J G, Giammar D E. 2022. Dynamic responses of trace metal bioaccessibility to fluctuating redox conditions in wetland soils and stream sediments. ACS Earth and Space Chemistry 6:1331−1344

doi: 10.1021/acsearthspacechem.2c00031
[98]

Xie W, Yuan S, Tong M, Ma S, Liao W, et al. 2020. Contaminant degradation by •OH during sediment oxygenation: dependence on Fe(II) species. Environmental Science & Technology 54:2975−2984

doi: 10.1021/acs.est.9b04870
[99]

Deng L, Liu F, Ding Z, Liang Y, Shi Z. 2023. Effect of natural organic matter on Cr(VI) reduction by reduced nontronite. Chemical Geology 615:121198

doi: 10.1016/j.chemgeo.2022.121198
[100]

Brookshaw DR, Pattrick RAD, Bots P, Law GTW, Lloyd JR, et al. 2015. Redox interactions of Tc(VII), U(VI), and Np(V) with microbially reduced biotite and chlorite. Environmental Science & Technology 49:13139−13148

doi: 10.1021/acs.est.5b03463
[101]

Bishop ME, Glasser P, Dong H, Arey B, Kovarik L. 2014. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals. Geochimica et Cosmochimica Acta 133:186−203

doi: 10.1016/j.gca.2014.02.040
[102]

Alexandrov V, Rosso KM. 2015. Ab initio modeling of Fe(II) adsorption and interfacial electron transfer at goethite (α-FeOOH) surfaces. Physical Chemistry Chemical Physics 17:14518−14531

doi: 10.1039/C5CP00921A
[103]

Frierdich A J, Helgeson M, Liu C, Wang C, Rosso K M, et al. 2015. Iron atom exchange between hematite and aqueous Fe(II). Environmental Science & Technology 49:8479−8486

doi: 10.1021/acs.est.5b01276
[104]

Neumann A, Wu LL, Li WQ, Beard BL, Johnson CM, et al. 2015. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals. Environmental Science & Technology 49:2786−2795

doi: 10.1021/es504984q
[105]

Handler RM, Beard BL, Johnson CM, Scherer MM. 2009. Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environmental Science & Technology 43:1102−1107

doi: 10.1021/es802402m
[106]

Piepenbrock A, Schröder C, Kappler A. 2014. Electron transfer from humic substances to biogenic and abiogenic Fe(III) oxyhydroxide minerals. Environmental Science & Technology 48:1656−1664

doi: 10.1021/es404497h
[107]

Liu D, Zhang QF, Wu L, Zeng Q, Dong HL, et al. 2016. Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite. Chemical Geology 447:199

doi: 10.1016/j.chemgeo.2016.11.013
[108]

Zhang N, Tong M, Yuan S. 2021. Redox transformation of structural iron in nontronite induced by quinones under anoxic conditions. Science of The Total Environment 801:149637

doi: 10.1016/j.scitotenv.2021.149637
[109]

Sheng Y, Dong H, Kukkadapu RK, Ni S, Zeng Q, et al. 2021. Lignin-enhanced reduction of structural Fe(III) in nontronite: Dual roles of lignin as electron shuttle and donor. Geochimica et Cosmochimica Acta 307:1−21

doi: 10.1016/j.gca.2021.05.037
[110]

Jaisi D P, Dong H, Liu C. 2007. Influence of biogenic Fe(II) on the extent of microbial reduction of Fe(III) in clay minerals nontronite, Illite, and chlorite. Geochimica et Cosmochimica Acta 71:1145−1158

doi: 10.1016/j.gca.2006.11.027
[111]

Weber KA, Urrutia MM, Churchill PF, Kukkadapu RK, Roden EE. 2006. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environmental Microbiology 8:100−113

doi: 10.1111/j.1462-2920.2005.00873.x
[112]

Smith J A, Lovley DR, Tremblay PL. 2013. Outer cell surface components essential for Fe(III) oxide reduction by Geobacter metallireducens. Applied and Environmental Microbiology 79:901−907

doi: 10.1128/AEM.02954-12
[113]

Xu Y, Schoonen MAA. 2000. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 85:543−556

doi: 10.2138/am-2000-0416
[114]

Yuan S, Liu X, Liao W, Zhang P, Wang X, et al. 2018. Mechanisms of electron transfer from structrual Fe(II) in reduced nontronite to oxygen for production of hydroxyl radicals. Geochimica et Cosmochimica Acta 223:422−436

doi: 10.1016/j.gca.2017.12.025
[115]

Liao W, Yuan S, Liu X, Tong M. 2019. Anoxic storage regenerates reactive Fe(II) in reduced nontronite with short-term oxidation. Geochimica et Cosmochimica Acta 257:96−109

doi: 10.1016/j.gca.2019.04.027
[116]

Malvankar NS, Lovley DR. 2014. Microbial nanowires for bioenergy applications. Current Opinion in Biotechnology 27:88−95

doi: 10.1016/j.copbio.2013.12.003
[117]

Peiffer S, Wan M. 2016. Reductive dissolution and reactivity of ferric (hydr)oxides: new insights and implications for environmental redox processes. In Iron Oxides, ed. Faivre D. Germany: Wiley. pp. 31-52 doi: 10.1002/9783527691395.ch3

[118]

Boland DD, Collins RN, Miller CJ, Glover CJ, Waite TD. 2014. Effect of solution and solid-phase conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite. Environmental Science & Technology 48:5477−5485

doi: 10.1021/es4043275
[119]

Gorski CA, Edwards R, Sander M, Hofstetter TB, Stewart SM. 2016. Thermodynamic characterization of iron oxide−aqueous Fe2+ redox couples. Environmental Science & Technology 50:8538−8547

doi: 10.1021/acs.est.6b02661
[120]

Stewart SM, Hofstetter TB, Joshi P, Gorski CA. 2018. Linking thermodynamics to pollutant reduction kinetics by Fe2+ bound to iron oxides. Environmental Science & Technology 52:5600−5609

doi: 10.1021/acs.est.8b00481
[121]

Katz JE, Zhang X, Attenkofer K, Chapman KW, Frandsen C, et al. 2012. Electron small polarons and their mobility in iron (oxyhydr)oxide nanoparticles. Science 337:1200−1203

doi: 10.1126/science.1223598
[122]

Latta DE, Neumann A, Premaratne WAPJ, Scherer MM. 2017. Fe(II)–Fe(III) electron transfer in a clay mineral with low Fe content. ACS Earth and Space Chemistry 1:197−208

doi: 10.1021/acsearthspacechem.7b00013
[123]

Neumann A, Olson TL, Scherer MM. 2013. Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at clay mineral edge and basal sites. Environmental Science & Technology 47:6969−6977

doi: 10.1021/es304744v
[124]

Alexandrov V, Neumann A, Scherer MM, Rosso KM. 2013. Electron exchange and conduction in nontronite from first-principles. The Journal of Physical Chemistry C 117:2032−2040

doi: 10.1021/jp3110776
[125]

Alexandrov V, Rosso K M. 2013. Insights into the mechanism of Fe(II) adsorption and oxidation at Fe–clay mineral surfaces from first-principles calculations. The Journal of Physical Chemistry C 117:22880−22886

doi: 10.1021/jp4073125
[126]

El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, et al. 2010. Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proceedings of the National Academy of Sciences of the United States of America 107:18127−18131

doi: 10.1073/pnas.1004880107
[127]

Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, et al. 2006. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology 72:7345−7348

doi: 10.1128/AEM.01444-06
[128]

Malvankar NS, Vargas M, Nevin KP, Franks AE, Leang C, et al. 2011. Tunable metallic-like conductivity in microbial nanowire networks. Nature Nanotechnology 6:573−579

doi: 10.1038/nnano.2011.119
[129]

Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, et al. 2010. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330:1413−1415

doi: 10.1126/science.1196526
[130]

Gorby Y A, Yanina S, McLean J S, Rosso K M, Moyles D, et al. 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences of the United States of America 103:11358−11363

doi: 10.1073/pnas.0604517103
[131]

Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, et al. 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences of the United States of America 111:12883−12888

doi: 10.1073/pnas.1410551111
[132]

Taillefert M, Beckler JS, Carey E, Burns JL, Fennessey CM, et al. 2007. Shewanella putrefaciens produces an Fe(III)-solubilizing organic ligand during anaerobic respiration on insoluble Fe(III) oxides. Journal of Inorganic Biochemistry 101:1760−1767

doi: 10.1016/j.jinorgbio.2007.07.020
[133]

Kato S, Hashimoto K, Watanabe K. 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America 109:10042−10046

doi: 10.1073/pnas.1117592109
[134]

Lovley DR, Anderson RT. 2000. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface. Hydrogeology Journal 8:77−88

doi: 10.1007/PL00010974
[135]

Holmes DE, Rotaru AE, Ueki T, Shrestha PM, Ferry JG, et al. 2018. Electron and proton flux for carbon dioxide reduction in Methanosarcina barkeri during direct interspecies electron transfer. Frontiers in Microbiology 9:3109

doi: 10.3389/fmicb.2018.03109
[136]

Lovley DR. 2011. Reach out and touch someone: potential impact of DIET (direct interspecies energy transfer) on anaerobic biogeochemistry, bioremediation, and bioenergy. Reviews in Environmental Science and Bio/Technology 10:101−105

doi: 10.1007/s11157-011-9236-9
[137]

Lovley DR. 2017. Happy together: microbial communities that hook up to swap electrons. The ISME Journal 11:327−336

doi: 10.1038/ismej.2016.136
[138]

Shen L, Zhao Q, Wu X, Li X, Li Q, et al. 2016. Interspecies electron transfer in syntrophic methanogenic consortia: from cultures to bioreactors. Renewable and Sustainable Energy Reviews 54:1358−1367

doi: 10.1016/j.rser.2015.10.102
[139]

Sato M, Mooney HM. 1960. The electrochemical mechanism of sulfide self-potentials. Geophysics 25:226−249

doi: 10.1190/1.1438689
[140]

Bigalke J, Grabner EW. 1997. The geobattery model: a contribution to large scale electrochemistry. Electrochimica Acta 42:3443−3452

doi: 10.1016/S0013-4686(97)00053-4
[141]

Cruz Viggi C, Presta E, Bellagamba M, Kaciulis S, Balijepalli SK, et al. 2015. The "Oil-Spill Snorkel": an innovative bioelectrochemical approach to accelerate hydrocarbons biodegradation in marine sediments. Frontiers in Microbiology 6:881

doi: 10.3389/fmicb.2015.00881
[142]

Yang Q, Zhao H, Liang H. 2015. Denitrification of overlying water by microbial electrochemical snorkel. Bioresource Technology 197:512−514

doi: 10.1016/j.biortech.2015.08.127
[143]

Wei MZ, Liu JW, Yang QZ, Xue A, Wu H, et al. 2022. Denitrification mechanism in oxygen-rich aquatic environments through long-distance electron transfer. NPJ Clean Water 5:61

doi: 10.1038/s41545-022-00205-x
[144]

Matturro B, Cruz Viggi C, Aulenta F, and Rossetti S. 2017. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Frontiers in Microbiology 8:952

doi: 10.3389/fmicb.2017.00952
[145]

Fischetti MV, Laux SE. 1988. Monte carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Physical Review B 38:9721−9745

doi: 10.1103/PhysRevB.38.9721
[146]

Liang Y, Dong M, Yang S, Lin L, Huang H, et al. 2025. Electroactive bacteria-established long-distance electron transfer to oxygen facilitates bio-transformation of dissolved organic matter for sediment remediation. Water Research 270:122829

doi: 10.1016/j.watres.2024.122829
[147]

Pentráková L, Su K, Pentrák M, Stucki JW. 2013. A review of microbial redox interactions with structural Fe in clay minerals. Clay Minerals 48:543−560

doi: 10.1180/claymin.2013.048.3.10
[148]

Yang Y, Guo J, Sun G, Xu M. 2013. Characterizing the snorkeling respiration and growth of Shewanella decolorationis S12. Bioresource Technology 128:472−478

doi: 10.1016/j.biortech.2012.10.103
[149]

Yang P, Jiang T, Cong Z, Liu G, Guo Y, et al. 2022. Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: the role of quinone and nonquinone moieties. Environmental Science & Technology 56:6744−6753

doi: 10.1021/acs.est.1c08927
[150]

Taran O. 2017. Electron transfer between electrically conductive minerals and quinones. Frontiers in Chemistry 5:49

doi: 10.3389/fchem.2017.00049
[151]

Kang SH, Choi W. 2009. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle. Environmental Science & Technology 43:878−883

doi: 10.1021/es801705f
[152]

Stern N, Mejia J, He S, Yang Y, Ginder-Vogel M, et al. 2018. Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction. Environmental Science & Technology 52:5691−5699

doi: 10.1021/acs.est.7b06574
[153]

Zhou GW, Yang XR, Li H, Marshall CW, Zheng BX, et al. 2016. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(III) reduction. Environmental Science & Technology 50:9298−9307

doi: 10.1021/acs.est.6b02077
[154]

Ma J, Zheng X, Yu W, Wu B, Wang J, et al. 2025. Visualizing electron transfer through silver nanoparticle formation and photothermal imaging: a case study of nanoscale zerovalent iron. Environmental Science & Technology 59:1457−1466

doi: 10.1021/acs.est.4c11435
[155]

Ma J, Yu W, Li X, Chen S, Wu B, et al. 2025. Quinones stimulate reactive oxygen species production from zero-valent iron over centimeter distances. Water Research 274:123141

doi: 10.1016/j.watres.2025.123141
[156]

Xiong R, Yu W, Ma J, Zheng X, Tan M, et al. 2025. Reduction potential governs the capacity of quinones for long-distance electron transfer and remote H2O2 generation. Environmental Science & Technology 59:14465−14474

doi: 10.1021/acs.est.5c00025
[157]

Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, et al. 2019. On the evolution and physiology of cable bacteria. Proceedings of the National Academy of Sciences of the United States of America 116:19116−19125

doi: 10.1073/pnas.1903514116
[158]

Nielsen LP, Risgaard-Petersen N. 2015. Rethinking sediment biogeochemistry after the discovery of electric currents. Annual Review of Marine Science 7:425−442

doi: 10.1146/annurev-marine-010814-015708
[159]

Marzocchi U, Trojan D, Larsen S, Louise Meyer R, Peter Revsbech N, et al. 2014. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. The ISME Journal 8:1682−1690

doi: 10.1038/ismej.2014.19
[160]

Wang Z, Digel L, Yuan Y, Lu H, Yang Y, et al. 2024. Electrogenic sulfur oxidation mediated by cable bacteria and its ecological effects. Environmental Science and Ecotechnology 20:100371

doi: 10.1016/j.ese.2023.100371
[161]

Yuan Y, Zhou L, Hou R, Wang Y, Zhou S. 2021. Centimeter-long microbial electron transport for bioremediation applications. Trends in Biotechnology 39:181−193

doi: 10.1016/j.tibtech.2020.06.011
[162]

Müller H, Bosch J, Griebler C, Damgaard LR, Nielsen LP, et al. 2016. Long-distance electron transfer by cable bacteria in aquifer sediments. The ISME Journal 10:2010−2019

doi: 10.1038/ismej.2015.250
[163]

Hermans M, Lenstra WK, Hidalgo-Martinez S, van Helmond NAGM, Witbaard R, et al. 2019. Abundance and biogeochemical impact of cable bacteria in baltic sea sediments. Environmental Science & Technology 53:7494−7503

doi: 10.1021/acs.est.9b01665
[164]

Meckenstock R U, Elsner M, Griebler C, Lueders T, Stumpp C, et al. 2015. Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers. Environmental Science & Technology 49:7073−7081

doi: 10.1021/acs.est.5b00715
[165]

Giese B, Karamash M, Fromm KM. 2023. Chances and challenges of long-distance electron transfer for cellular redox reactions. FEBS Letters 597:166−173

doi: 10.1002/1873-3468.14493
[166]

Karhu K, Auffret MD, Dungait JAJ, Hopkins DW, Prosser JI, et al. 2014. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513:81−84

doi: 10.1038/nature13604
[167]

Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature reviews microbiology 15:579−590

doi: 10.1038/nrmicro.2017.87
[168]

Davranche M, Gélabert A, Benedetti M F. 2020. Electron transfer drives metal cycling in the critical zone. Elements 16:185−190

doi: 10.2138/gselements.16.3.185
[169]

Li Y, Yu S, Strong J, Wang H. 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the "FeIII–FeII redox wheel" in dynamic redox environments? Journal of Soils & Sediments 12:683−693

doi: 10.1007/s11368-012-0507-z
[170]

Daugherty E E, Gilbert B, Nico PS, Borch T. 2017. Complexation and redox buffering of iron(II) by dissolved organic matter. Environmental Science & Technology 51:11096−11104

doi: 10.1021/acs.est.7b03152
[171]

Dong H. 2012. Clay–microbe interactions and implications for environmental mitigation. Elements 8:113−118

doi: 10.2113/gselements.8.2.113
[172]

Joshi P, Schroth MH, Sander M. 2021. Redox properties of peat particulate organic matter: quantification of electron accepting capacities and assessment of electron transfer reversibility. Journal of Geophysical Research: Biogeosciences 126:e2021JG006329

doi: 10.1029/2021JG006329
[173]

Obradović N, Schmitz RA, Haffter F, Meier DV, Lever MA, et al. 2024. Peat particulate organic matter accepts electrons during in situ incubation in the anoxic subsurface of ombrotrophic bogs. Journal of Geophysical Research: Biogeosciences 129:e2024JG008223

doi: 10.1029/2024JG008223
[174]

Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. 2013. Microbial syntrophy: interaction for the common good. FEMS Microbiology Reviews 37:384−406

doi: 10.1111/1574-6976.12019
[175]

Heitmann T, Goldhammer T, Beer J, Blodau C. 2007. Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Global Change Biology 13:1771−1785

doi: 10.1111/j.1365-2486.2007.01382.x
[176]

Nurmi JT, Tratnyek PG. 2002. Electrochemical properties of natural organic matter (NOM), fractions of NOM, and model biogeochemical electron shuttles. Environmental Science & Technology 36:617−624

doi: 10.1021/es0110731
[177]

Yang Y, Wang Z, Gan C, Klausen LH, Bonné R, et al. 2021. Long-distance electron transfer in a filamentous Gram-positive bacterium. Nature Communications 12:1709

doi: 10.1038/s41467-021-21709-z
[178]

Cai X, Yuan Y, Yu L, Zhang B, Li J, et al. 2020. Biochar enhances bioelectrochemical remediation of pentachlorophenol-contaminated soils via long-distance electron transfer. Journal of Hazardous Materials 391:122213

doi: 10.1016/j.jhazmat.2020.122213
[179]

Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M. 2010. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 46:1071−1074

doi: 10.1038/nature08790
[180]

Scholz VV, Meckenstock RU, Nielsen LP, Risgaard-Petersen N. 2020. Cable bacteria reduce methane emissions from rice-vegetated soils. Nature Communications 11:1878

doi: 10.1038/s41467-020-15812-w
[181]

Sulu-Gambari F, Seitaj D, Behrends T, Banerjee D, Meysman FJR, et al. 2016. Impact of cable bacteria on sedimentary iron and manganese dynamics in a seasonally-hypoxic marine basin. Geochimica et Cosmochimica Acta 192:49−69

doi: 10.1016/j.gca.2016.07.028
[182]

Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP. 2015. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochimica et Cosmochimica Acta 152:122−142

doi: 10.1016/j.gca.2014.12.014
[183]

Watts R J, Teel A L. 2006. Treatment of contaminated soils and groundwater using ISCO. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 10:2−9

doi: 10.1061/(asce)1090-025x(2006)10:1(2)
[184]

Bokare A D, Choi W. 2014. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials 275:121−135

doi: 10.1016/j.jhazmat.2014.04.054
[185]

Xu Z, Yu Y, Xu X, Tsang DCW, Yao C, Fan J, et al. 2022. Direct and indirect electron transfer routes of chromium(VI) reduction with different crystalline ferric oxyhydroxides in the presence of pyrogenic carbon. Environmental Science & Technology 56:1724−1735

doi: 10.1021/acs.est.1c06642
[186]

Fuchslueger L, Solly EF, Canarini A, Brangarí AC. 2024. Overview: global change effects on terrestrial biogeochemistry at the plant–soil interface. Biogeosciences 21:3959−3964

doi: 10.5194/bg-21-3959-2024
[187]

Camacho A, Walter XA, Picazo A, Zopfi J. 2017. Photoferrotrophy: remains of an ancient photosynthesis in modern environments. Frontiers in Microbiology 8:323

doi: 10.3389/fmicb.2017.00323
[188]

Posth N R, Konhauser K O, Kappler A. 2013. Microbiological processes in banded iron formation deposition. Sedimentology 60:1559−1799

doi: 10.1111/sed.12051
[189]

Aubineau J, Chi Fru E, Destrigneville C, Decrausaz T, Parat F, et al. 2025. Iron-rich microband formation in marine sediments by hydrothermal iron cycling bacteria at Lucky Strike. Communications Earth & Environment 6:338

doi: 10.1038/s43247-025-02223-2
[190]

Cannaò E, Malaspina N. 2018. From oceanic to continental subduction: Implications for the geochemical and redox evolution of the supra-subduction mantle. Geosphere 14:2311−2336

doi: 10.1130/GES01597.1
[191]

Ge RF, Wilde SA, Zhu WB, Wang XL. 2023. Earth’s early continental crust formed from wet and oxidizing arc magmas. Nature 623:334−339

doi: 10.1038/s41586-023-06552-0
[192]

Muller É, Philippot P, Rollion-Bard C, Cartigny P. 2016. Multiple sulfur-isotope signatures in Archean sulfates and their implications for the chemistry and dynamics of the early atmosphere. Proceedings of the National Academy of Sciences of the United States of America 113:7432−7437

doi: 10.1073/pnas.1520522113
[193]

Daines SJ, Mills BJW, Lenton TM. 2017. Atmospheric oxygen regulation at low proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nature Communications 8:14379

doi: 10.1038/ncomms14379
[194]

Olejarz J, Iwasa Y, Knoll AH, Nowak MA. 2021. The Great Oxygenation Event as a consequence of ecological dynamics modulated by planetary change. Nature Communications 12:3985

doi: 10.1038/s41467-021-23286-7
[195]

Sander M, Hofstetter TB, Gorski CA. 2015. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches. Environmental Science & Technology 49:5862−5878

doi: 10.1021/acs.est.5b00006
[196]

Gorski C A, Aeschbacher M, Soltermann D, Voegelin A, Baeyens B, et al. 2012. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environmental Science & Technology 46:9360−9368

doi: 10.1021/es3020138
[197]

Schaefer MV, Gorski CA, Scherer MM. 2011. Spectroscopic evidence for interfacial Fe(II)-Fe(III) electron transfer in a clay mineral. Environmental Science & Technology 45:540−545

doi: 10.1021/es102560m
[198]

Notini L, Latta DE, Neumann A, Pearce CI, Sassi M, et al. 2018. The role of defects in Fe(II)–goethite electron transfer. Environmental Science & Technology 52:2751−2759

doi: 10.1021/acs.est.7b05772
[199]

Behrens S, Kappler A, Obst M. 2012. Linking environmental processes to the in situ functioning of microorganisms by high-resolution secondary ion mass spectrometry (NanoSIMS) and scanning transmission X-ray microscopy (STXM). Environmental Microbiology 14:2851−2869

doi: 10.1111/j.1462-2920.2012.02724.x
[200]

Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, et al. 2018. Long-distance electron transport in individual, living cable bacteria. Proceedings of the National Academy of Sciences of the United States of America 115:5786−5791

doi: 10.1073/pnas.1800367115
[201]

Lueder U, Druschel G, Emerson D, Kappler A, Schmidt C. 2018. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic iron(II)-oxidizing bacteria. FEMS Microbiology Ecology 2:4693834

doi: 10.1093/femsec/ffx177
[202]

Lueder U, Maisch M, Laufer K, Jørgensen BB, Kappler A, et al. 2020. Influence of physical perturbation on Fe(II) supply in coastal marine sediments. Environmental Science & Technology 54:3209−3218

doi: 10.1021/acs.est.9b06278
[203]

Lueder U, Jørgensen BB, Kappler A, Schmidt C. 2020. Fe(III) photoreduction producing Feaq2+ in oxic freshwater sediment. Environmental Science & Technology 54:862−869

doi: 10.1021/acs.est.9b05682
[204]

Marzocchi U, Palma E, Rossetti S, Aulenta F, Scoma A. 2020. Parallel artificial and biological electric circuits power petroleum decontamination: the case of snorkel and cable bacteria. Water Research 173:115520

doi: 10.1016/j.watres.2020.115520
[205]

Klueglein N, Kappler A. 2013. Abiotic oxidation of Fe(II) by reactive nitrogen species in cultures of the nitrate-reducing Fe(II) oxidizer Acidovorax sp. BoFeN1- questioning the existence of enzymatic Fe(II) oxidation. Geobiology 11:180−190

doi: 10.1111/gbi.12019