[1]

Durand D, Collin A, Merlot E, Baéza E, Guilloteau LA, et al. 2022. Review: Implication of redox imbalance in animal health and performance at critical periods, insights from different farm species. Animal 16:100543

doi: 10.1016/j.animal.2022.100543
[2]

Villeneuve G, Roy C, Deschêne K, Matte JJ, Lapointe J, et al. 2025. Effects of increasing dietary zinc oxide levels on the hepatic mitochondrial energy metabolism, oxidative balance, and antioxidant system in weaned piglets. Journal of Animal Science 103:skaf031

doi: 10.1093/jas/skaf031
[3]

Li Q, Yang S, Chen F, Guan W, Zhang S. 2022. Nutritional strategies to alleviate oxidative stress in sows. Animal Nutrition 9:60−73

doi: 10.1016/j.aninu.2021.10.006
[4]

Zheng P, Yu B, He J, Yu J, Mao X, et al. 2017. Arginine metabolism and its protective effects on intestinal health and functions in weaned piglets under oxidative stress induced by diquat. British Journal of Nutrition 117:1495−502

doi: 10.1017/S0007114517001519
[5]

Cao S, Wu H, Wang C, Zhang Q, Jiao L, et al. 2018. Diquat-induced oxidative stress increases intestinal permeability, impairs mitochondrial function, and triggers mitophagy in piglets. Journal of Animal Science 96:1795−805

doi: 10.1093/jas/sky104
[6]

Ghawi SK, Methven L, Niranjan K. 2013. The potential to intensify sulforaphane formation in cooked broccoli (Brassica oleracea var. italica) using mustard seeds (Sinapis alba). Food Chemistry 138:1734−41

doi: 10.1016/j.foodchem.2012.10.119
[7]

Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, et al. 2022. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 185:3307−3328.e19

doi: 10.1016/j.cell.2022.07.016
[8]

Cramer JM, Jeffery EH. 2011. Sulforaphane absorption and excretion following ingestion of a semi-purified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutrition and Cancer 63:196−201

doi: 10.1080/01635581.2011.523495
[9]

Atwell LL, Hsu A, Wong CP, Stevens JF, Bella D, et al. 2015. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase‐treated broccoli sprout extract. Molecular Nutrition & Food Research 59:424−33

doi: 10.1002/mnfr.201400674
[10]

Mahn A, Castillo A. 2021. Potential of sulforaphane as a natural immune system enhancer: a review. Molecules 26:752

doi: 10.3390/molecules26030752
[11]

Kensler TW, Wakabayashi N, Biswal S. 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology 47:89−116

doi: 10.1146/annurev.pharmtox.46.120604.141046
[12]

Houghton CA. 2019. Sulforaphane: its "coming of age" as a clinically relevant nutraceutical in the prevention and treatment of chronic disease. Oxidative Medicine and Cellular Longevity 2019:2716870

doi: 10.1155/2019/2716870
[13]

Warwick E, Cassidy A, Hanley B, Jouni ZE, Bao Y. 2012. Effect of phytochemicals on phase II enzyme expression in infant human primary skin fibroblast cells. British Journal of Nutrition 108:2158−65

doi: 10.1017/S0007114512000554
[14]

Bonnesen C, Eggleston IM, Hayes JD. 2001. Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer Research 61:6120−30

[15]

Georgikou C, Yin L, Gladkich J, Xiao X, Sticht C, et al. 2020. Inhibition of miR30a-3p by sulforaphane enhances gap junction intercellular communication in pancreatic cancer. Cancer Letters 469:238−45

doi: 10.1016/j.canlet.2019.10.042
[16]

Xu Y, Han X, Li Y, Min H, Zhao X, et al. 2019. Sulforaphane mediates glutathione depletion via polymeric nanoparticles to restore cisplatin chemosensitivity. ACS Nano 13:13445−55

doi: 10.1021/acsnano.9b07032
[17]

Hossain S, Liu Z, Wood RJ. 2020. Histone deacetylase activity and vitamin D‐dependent gene expressions in relation to sulforaphane in human breast cancer cells. Journal of Food Biochemistry 44:e13114

doi: 10.1111/jfbc.13114
[18]

Ishiura Y, Ishimaru H, Watanabe T, Fujimuro M. 2019. Sulforaphane exhibits cytotoxic effects against primary effusion lymphoma cells by suppressing p38MAPK and AKT phosphorylation. Biological and Pharmaceutical Bulletin 42:2109−12

doi: 10.1248/bpb.b19-00659
[19]

Wu DM, Zheng ZH, Fan SH, Zhang ZF, Chen GQ, et al. 2020. Sulforaphane administration alleviates diffuse axonal injury (DAI) via regulation signaling pathway of NRF2 and HO‐1. Journal of Cellular Biochemistry 121:430−42

doi: 10.1002/jcb.29203
[20]

Carrasco-Pozo C, Tan KN, Rodriguez T, Avery VM. 2019. The molecular effects of sulforaphane and capsaicin on metabolism upon androgen and Tip60 activation of androgen receptor. International Journal of Molecular Sciences 20:5384

doi: 10.3390/ijms20215384
[21]

Lin LC, Yeh CT, Kuo CC, Lee CM, Yen GC, et al. 2012. Sulforaphane potentiates the efficacy of imatinib against chronic leukemia cancer stem cells through enhanced abrogation of Wnt/β-catenin function. Journal of Agricultural and Food Chemistry 60:7031−39

doi: 10.1021/jf301981n
[22]

Santín-Márquez R, Alarcón-Aguilar A, López-Diazguerrero NE, Chondrogianni N, Königsberg M. 2019. Sulforaphane-role in aging and neurodegeneration. GeroScience 41:655−70

doi: 10.1007/s11357-019-00061-7
[23]

Zeren S, Bayhan Z, Kocak FE, Kocak C, Akcılar R, et al. 2016. Gastroprotective effects of sulforaphane and thymoquinone against acetylsalicylic acid-induced gastric ulcer in rats. Journal of Surgical Research 203:348−59

doi: 10.1016/j.jss.2016.03.027
[24]

Jiang LL, Zhou SJ, Zhang XM, Chen HQ, Liu W. 2016. Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through downregulation of HDAC activity. Biomedicine & Pharmacotherapy 78:74−80

doi: 10.1016/j.biopha.2015.11.007
[25]

Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, et al. 2015. Epigenetic regulation by sulforaphane: opportunities for breast and prostate cancer chemoprevention. Current Pharmacology Reports 1:102−11

doi: 10.1007/s40495-014-0002-x
[26]

Clarke JD, Riedl K, Bella D, Schwartz SJ, Stevens JF, et al. 2011. Comparison of isothiocyanate metabolite levels and histone deacetylase activity in human subjects consuming broccoli sprouts or broccoli supplement. Journal of Agricultural and Food Chemistry 59:10955−63

doi: 10.1021/jf202887c
[27]

Hussain S, Gupta G, Shahwan M, Bansal P, Kaur H, et al. 2024. Non-coding RNA: a key regulator in the Glutathione-GPX4 pathway of ferroptosis. Non-coding RNA Research 9:1222−34

doi: 10.1016/j.ncrna.2024.05.007
[28]

Kang KA, Piao MJ, Fernando PDSM, Herath HMUL, Boo HJ, et al. 2024. Oxidative stress-mediated RUNX3 mislocalization occurs via Jun activation domain-binding protein 1 and histone modification. Applied Biochemistry and Biotechnology 196:8082−95

doi: 10.1007/s12010-024-04944-0
[29]

Greer EL, Shi Y. 2012. Histone methylation: a dynamic mark in health, disease and inheritance. Nature Reviews Genetics 13:343−57

doi: 10.1038/nrg3173
[30]

Barnes CE, English DM, Cowley SM. 2019. Acetylation & Co: an expanding repertoire of histone acylations regulates chromatin and transcription. Essays in Biochemistry 63:97−107

doi: 10.1042/EBC20180061
[31]

Hyun K, Jeon J, Park K, Kim J. 2017. Writing, erasing and reading histone lysine methylations. Experimental & Molecular Medicine 49:e324

doi: 10.1038/emm.2017.11
[32]

Ito K, Hanazawa T, Tomita K, Barnes PJ, Adcock IM. 2004. Oxidative stress reduces histone deacetylase 2 activity and enhances IL-8 gene expression: role of tyrosine nitration. Biochemical and Biophysical Research Communications 315:240−45

doi: 10.1016/j.bbrc.2004.01.046
[33]

Niu Y, DesMarais TL, Tong Z, Yao Y, Costa M. 2015. Oxidative stress alters global histone modification and DNA methylation. Free Radical Biology and Medicine 82:22−28

doi: 10.1016/j.freeradbiomed.2015.01.028
[34]

Wang S, Peng X, Zhu Q, Lu S, Hu P, et al. 2025. Lithocholic acid attenuates DON-induced inflammatory responses via epigenetic regulation of DUSP5 and TRAF5 in porcine intestinal epithelial cells. Frontiers in Veterinary Science 12:1493496

doi: 10.3389/fvets.2025.1493496
[35]

Sivandzade F, Prasad S, Bhalerao A, Cucullo L. 2019. NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biology 21:101059

doi: 10.1016/j.redox.2018.11.017
[36]

Cascajosa-Lira A, Prieto AI, Pichardo S, Jos A, Cameán AM. 2024. Protective effects of sulforaphane against toxic substances and contaminants: a systematic review. Phytomedicine 130:155731

doi: 10.1016/j.phymed.2024.155731
[37]

Shang Q, Liu H, Wu D, Mahfuz S, Piao X. 2021. Source of fiber influences growth, immune responses, gut barrier function and microbiota in weaned piglets fed antibiotic-free diets. Animal Nutrition 7:315−25

doi: 10.1016/j.aninu.2020.12.008
[38]

Farahat M, Ibrahim D, Kishawy ATY, Abdallah HM, Hernandez-Santana A, et al. 2021. Effect of cereal type and plant extract addition on the growth performance, intestinal morphology, caecal microflora, and gut barriers gene expression of broiler chickens. Animal 15:100056

doi: 10.1016/j.animal.2020.100056
[39]

Walton KD, Freddo AM, Wang S, Gumucio DL. 2016. Generation of intestinal surface: an absorbing tale. Development 143:2261−72

doi: 10.1242/dev.135400
[40]

Modina SC, Polito U, Rossi R, Corino C, Di Giancamillo A. 2019. Nutritional regulation of gut barrier integrity in weaning piglets. Animals 9:1045

doi: 10.3390/ani9121045
[41]

Wang M, Huang H, Hu Y, Liu Y, Zeng X, et al. 2020. Effects of dietary supplementation with herbal extract mixture on growth performance, organ weight and intestinal morphology in weaning piglets. Journal of Animal Physiology and Animal Nutrition 104:1462−70

doi: 10.1111/jpn.13422
[42]

Su G, Zhou X, Wang Y, Chen D, Chen G, et al. 2020. Dietary supplementation of plant essential oil improves growth performance, intestinal morphology and health in weaned pigs. Journal of Animal Physiology and Animal Nutrition 104:579−89

doi: 10.1111/jpn.13271
[43]

Lu H, Zhao W, Zhang B, Xie Y, He J, et al. 2024. Construction and validation of an oxidative phosphorylation signature in high‐grade glioma and potential inhibitors screening. Analytical Cellular Pathology 2024:2868534

doi: 10.1155/2024/2868534
[44]

Zhang R, Neuhoff C, Yang Q, Cinar MU, Uddin MJ, et al. 2022. Sulforaphane enhanced proliferation of porcine satellite cells via epigenetic augmentation of SMAD7. Animals 12:1365

doi: 10.3390/ani12111365
[45]

Fleishman JS, Kumar S. 2024. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduction and Targeted Therapy 9:97

doi: 10.1038/s41392-024-01811-6
[46]

Nakayama N, Yamaguchi S, Sasaki Y, Chikuma T. 2016. Hydrogen peroxide-induced oxidative stress activates proteasomal trypsin-like activity in human U373 glioma cells. Journal of Molecular Neuroscience 58:297−305

doi: 10.1007/s12031-015-0680-9
[47]

Zhao H, Tian M, Xiong L, Lin T, Zhang S, et al. 2023. Maternal supplementation with glycerol monolaurate improves the intestinal health of suckling piglets by inhibiting the NF-κB/MAPK pathways and improving oxidative stability. Food & Function 14:3290−303

doi: 10.1039/D3FO00068K
[48]

Nissanka N, Moraes CT. 2018. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Letters 592:728−42

doi: 10.1002/1873-3468.12956
[49]

Olufunmilayo EO, Gerke-Duncan MB, Holsinger RM. 2023. Oxidative stress and antioxidants in neurodegenerative disorders. Antioxidants 12:517

doi: 10.3390/antiox12020517
[50]

Enayati AA, Ranson H, Hemingway J. 2005. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology 14:3−8

doi: 10.1111/j.1365-2583.2004.00529.x
[51]

Li X, Tang L, Deng J, Qi X, Zhang J, et al. 2022. Identifying metabolic reprogramming phenotypes with glycolysis-lipid metabolism discoordination and intercellular communication for lung adenocarcinoma metastasis. Communications Biology 5:198

doi: 10.1038/s42003-022-03135-z
[52]

Ma Y, Temkin SM, Hawkridge AM, Guo C, Wang W, et al. 2018. Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Letters 435:92−100

doi: 10.1016/j.canlet.2018.08.006
[53]

Wang C, Shao L, Pan C, Ye J, Ding Z, et al. 2019. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Research & Therapy 10:175

doi: 10.1186/s13287-019-1265-2
[54]

Chandimali N, Bak SG, Park EH, Lim HJ, Won YS, et al. 2025. Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery 11:19

doi: 10.1038/s41420-024-02278-8
[55]

Schieber M, Chandel NS. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24:R453−R462

doi: 10.1016/j.cub.2014.03.034
[56]

Liu HY, Gu H, Li Y, Hu P, Yang Y, et al. 2021. Dietary conjugated linoleic acid modulates the hepatic circadian clock program via PPARα/REV-ERBα-mediated chromatin modification in mice. Frontiers in Nutrition 8:711398

doi: 10.3389/fnut.2021.711398
[57]

Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, et al. 2018. Molecular actions of PPARα in lipid metabolism and inflammation. Endocrine Reviews 39:760−802

doi: 10.1210/er.2018-00064
[58]

Kong S, Zhang YH, Zhang W. 2018. Regulation of intestinal epithelial cells properties and functions by amino acids. BioMed Research International 2018:2819154

doi: 10.1155/2018/2819154
[59]

Parmar G, Fong-McMaster C, Pileggi CA, Patten DA, Cuillerier A, et al. 2024. Accessory subunit NDUFB4 participates in mitochondrial complex I supercomplex formation. Journal of Biological Chemistry 300:105626

doi: 10.1016/j.jbc.2024.105626
[60]

Whitaker HC, Patel D, Howat WJ, Warren AY, Kay JD, et al. 2013. Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress. British Journal of Cancer 109:983−93

doi: 10.1038/bjc.2013.396
[61]

Wang SF, Tseng LM, Lee HC. 2023. Role of mitochondrial alterations in human cancer progression and cancer immunity. Journal of Biomedical Science 30:61

doi: 10.1186/s12929-023-00956-w
[62]

Bano D, Prehn JHM. 2018. Apoptosis-inducing factor (AIF) in physiology and disease: the tale of a repented natural born killer. eBioMedicine 30:29−37

doi: 10.1016/j.ebiom.2018.03.016
[63]

Morton SU, Prabhu SP, Lidov HGW, Shi J, Anselm I, et al. 2017. AIFM1 mutation presenting with fatal encephalomyopathy and mitochondrial disease in an infant. Cold Spring Harbor Molecular Case Studies 3:a001560

doi: 10.1101/mcs.a001560
[64]

Zhou W, Ji L, Liu X, Tu D, Shi N, et al. 2022. AIFM1, negatively regulated by miR-145-5p, aggravates hypoxia-induced cardiomyocyte injury. Biomedical Journal 45:870−82

doi: 10.1016/j.bj.2021.11.012
[65]

Gu H, Liu Y, Zhao Y, Qu H, Li Y, et al. 2023. Hepatic anti-oxidative genes CAT and GPX4 are epigenetically modulated by RORγ/NRF2 in alphacoronavirus-exposed piglets. Antioxidants 12:1305

doi: 10.3390/antiox12061305
[66]

Tang W, Zhong Y, Wei Y, Deng Z, Mao J, et al. 2022. Ileum tissue single-cell mRNA sequencing elucidates the cellular architecture of pathophysiological changes associated with weaning in piglets. BMC Biology 20:123

doi: 10.1186/s12915-022-01321-3
[67]

Murugan AK, Alzahrani AS. 2022. Isocitrate dehydrogenase IDH1 and IDH2 mutations in human cancer: prognostic implications for gliomas. British Journal of Biomedical Science 79:10208

doi: 10.3389/bjbs.2021.10208
[68]

Robert McMaster W, Morrison CJ, Kobor MS. 2016. Epigenetics: a new model for intracellular parasite–host cell regulation. Trends in Parasitology 32:515−21

doi: 10.1016/j.pt.2016.04.002
[69]

Barnes BM, Shyne A, Gunn DA, Griffiths CEM, Watson REB. 2024. Epigenetics and ultraviolet radiation: Implications for skin ageing and carcinogenesis. Skin Health and Disease 4:e410

doi: 10.1002/ski2.410
[70]

Li K, Li H, Zhang K, Zhang J, Hu P, et al. 2021. Orphan nuclear receptor RORγ modulates the genome-wide binding of the cholesterol metabolic genes during mycotoxin-induced liver injury. Nutrients 13:2539

doi: 10.3390/nu13082539