[1]

Dietz V, Faist M, Pierrot-Deseilligny E. 1990. Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Experimental Brain Research 79:221−24

doi: 10.1007/BF00228893
[2]

Morin C, Katz R, Mazieres L, Pierrot-Deseilligny E. 1982. Comparison of soleus H reflex facilitation at the onset of soleus contractions produced voluntarily and during the stance phase of human gait. Neuroscience Letters 33:47−53

doi: 10.1016/0304-3940(82)90128-8
[3]

Verschueren SMP, Swinnen SP, Desloovere K, Duysens J. 2002. Effects of tendon vibration on the spatiotemporal characteristics of human locomotion. Experimental Brain Research 143:231−39

doi: 10.1007/s00221-001-0987-3
[4]

Cinelli ME, Patla AE, Allard F. 2009. Behaviour and gaze analyses during a goal-directed locomotor task. Quarterly Journal of Experimental Psychology 62:483−99

doi: 10.1080/17470210802168583
[5]

Deshpande N, Patla AE. 2007. Visual-vestibular interaction during goal directed locomotion: effects of aging and blurring vision. Experimental Brain Research 176:43−53

doi: 10.1007/s00221-006-0593-5
[6]

Grillner S, Wallén P, Saitoh K, Kozlov A, Robertson B. 2008. Neural bases of goal-directed locomotion in vertebrates − an overview. Brain Research Reviews 57:2−12

doi: 10.1016/j.brainresrev.2007.06.027
[7]

Di Marco S, Sulpizio V, Bellagamba M, Fattori P, Galati G, et al. 2021. Multisensory integration in cortical regions responding to locomotion-related visual and somatomotor signals. NeuroImage 244:118581

doi: 10.1016/j.neuroimage.2021.118581
[8]

Rossignol S, Dubuc R, Gossard JP. 2006. Dynamic sensorimotor interactions in locomotion. Physiological Reviews 86:89−154

doi: 10.1152/physrev.00028.2005
[9]

Melnik A, Hairston WD, Ferris DP, König P. 2017. EEG correlates of sensorimotor processing: independent components involved in sensory and motor processing. Scientific Reports 7:4461

doi: 10.1038/s41598-017-04757-8
[10]

Patla AE. 1997. Understanding the roles of vision in the control of human locomotion. Gait & Posture 5:54−69

doi: 10.1016/S0966-6362(96)01109-5
[11]

Pearson KG. 1995. Proprioceptive regulation of locomotion. Current Opinion in Neurobiology 5:786−91

doi: 10.1016/0959-4388(95)80107-3
[12]

Sipp AR, Gwin JT, Makeig S, Ferris DP. 2013. Loss of balance during balance beam walking elicits a multifocal theta band electrocortical response. Journal of Neurophysiology 110:2050−60

doi: 10.1152/jn.00744.2012
[13]

Wilkie RM, Wann JP, Allison RS. 2008. Active gaze, visual look-ahead, and locomotor control. Journal of Experimental Psychology Human Perception and Performance 34:1150−64

doi: 10.1037/0096-1523.34.5.1150
[14]

Patla AE. 1991. Visual control of human locomotion. In Advances in Psychology, ed. Patla AE. Vol. 78. North-Holland: Elsevier. pp. 55−97 doi: 10.1016/S0166-4115(08)60738-4

[15]

Thomson JA. 1980. How do we use visual information to control locomotion? Trends in Neurosciences 3:247−50

doi: 10.1016/S0166-2236(80)80076-2
[16]

Roeles S, Rowe PJ, Bruijn SM, Childs CR, Tarfali GD, et al. 2018. Gait stability in response to platform, belt, and sensory perturbations in young and older adults. Medical & Biological Engineering & Computing 56:2325−35

doi: 10.1007/s11517-018-1855-7
[17]

Luu TP, He Y, Nakagome S, Nathan K, Brown S, et al. 2017. Multi-trial gait adaptation of healthy individuals during visual kinematic perturbations. Frontiers in Human Neuroscience 11:320

doi: 10.3389/fnhum.2017.00320
[18]

Francis CA, Franz JR, O’Connor SM, Thelen DG. 2015. Gait variability in healthy old adults is more affected by a visual perturbation than by a cognitive or narrow step placement demand. Gait & Posture 42:380−85

doi: 10.1016/j.gaitpost.2015.07.006
[19]

Rietdyk S, Rhea CK. 2006. Control of adaptive locomotion: effect of visual obstruction and visual cues in the environment. Experimental Brain Research 169:272−78

doi: 10.1007/s00221-005-0345-y
[20]

Nordin AD, Hairston WD, Ferris DP. 2019. Human electrocortical dynamics while stepping over obstacles. Scientific Reports 9:4693

doi: 10.1038/s41598-019-41131-2
[21]

Florence CS, Bergen G, Atherly A, Burns E, Stevens J, et al. 2018. Medical costs of fatal and nonfatal falls in older adults. Journal of the American Geriatrics Society 66:693−98

doi: 10.1111/jgs.15304
[22]

Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends in Neurosciences 15:20−25

doi: 10.1016/0166-2236(92)90344-8
[23]

Marigold DS, Drew T. 2017. Posterior parietal cortex estimates the relationship between object and body location during locomotion. eLife 6:e28143

doi: 10.7554/eLife.28143
[24]

Lajoie K, Andujar J-E, Pearson K, Drew T. 2010. Neurons in area 5 of the posterior parietal cortex in the cat contribute to interlimb coordination during visually guided locomotion: a role in working memory. Journal of Neurophysiology 103:2234−54

doi: 10.1152/jn.01100.2009
[25]

Drew T, Andujar JE, Lajoie K, Yakovenko S. 2008. Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Research Reviews 57:199−211

doi: 10.1016/j.brainresrev.2007.07.017
[26]

Graziano MS, Hu XT, Gross CG. 1997. Visuospatial properties of ventral premotor cortex. Journal of Neurophysiology 77:2268−92

doi: 10.1152/jn.1997.77.5.2268
[27]

Wise SP, Boussaoud D, Johnson PB, Caminiti R. 1997. Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annual Review of Neuroscience 20:25−42

doi: 10.1146/annurev.neuro.20.1.25
[28]

Gwin JT, Gramann K, Makeig S, Ferris DP. 2011. Electrocortical activity is coupled to gait cycle phase during treadmill walking. NeuroImage 54:1289−96

doi: 10.1016/j.neuroimage.2010.08.066
[29]

Nordin AD, Hairston WD, Ferris DP. 2020. Faster gait speeds reduce alpha and beta EEG spectral power from human sensorimotor cortex. IEEE Transactions on Biomedical Engineering 67:842−53

doi: 10.1109/TBME.2019.2921766
[30]

Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR. 2003. EMG contamination of EEG: spectral and topographical characteristics. Clinical Neurophysiology 114:1580−93

doi: 10.1016/S1388-2457(03)00093-2
[31]

Symeonidou ER, Nordin AD, Hairston WD, Ferris DP. 2018. Effects of cable sway, electrode surface area, and electrode mass on electroencephalography signal quality during motion. Sensors 18:1073

doi: 10.3390/s18041073
[32]

Gwin JT, Gramann K, Makeig S, Ferris DP. 2010. Removal of movement artifact from high-density EEG recorded during walking and running. Journal of Neurophysiology 103:3526−34

doi: 10.1152/jn.00105.2010
[33]

Oliveira AS, Schlink BR, Hairston WD, König P, Ferris DP. 2017. Restricted vision increases sensorimotor cortex involvement in human walking. Journal of Neurophysiology 118:1943−51

doi: 10.1152/jn.00926.2016
[34]

Nordin AD, Hairston WD, Ferris DP. Faster gait speeds suppress human auditory electrocortical responses. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), 6−9 October 2019, Bari, Italy. IEEE. pp. 235−40 doi: 10.1109/smc.2019.8914308

[35]

Bischof WF, Boulanger P. 2003. Spatial navigation in virtual reality environments: an EEG analysis. Cyberpsychology & Behavior 6:487−95

doi: 10.1089/109493103769710514
[36]

Armougum A, Orriols E, Gaston-Bellegarde A, Marle CJ, Piolino P. 2019. Virtual reality: a new method to investigate cognitive load during navigation. Journal of Environmental Psychology 65:101338

doi: 10.1016/j.jenvp.2019.101338
[37]

Hollman JH, Brey RH, Robb RA, Bang TJ, Kaufman KR. 2006. Spatiotemporal gait deviations in a virtual reality environment. Gait & Posture 23:441−44

doi: 10.1016/j.gaitpost.2005.05.005
[38]

Peterson SM, Ferris DP. 2019. Group-level cortical and muscular connectivity during perturbations to walking and standing balance. NeuroImage 198:93−103

doi: 10.1016/j.neuroimage.2019.05.038
[39]

Fink PW, Foo PS, Warren WH. 2007. Obstacle avoidance during walking in real and virtual environments. ACM Transactions on Applied Perception (TAP) 4:2−es

doi: 10.1145/1227134.1227136
[40]

Drewes J, Feder S, Einhäuser W. 2021. Gaze during locomotion in virtual reality and the real world. Frontiers in Neuroscience 15:656913

doi: 10.3389/fnins.2021.656913
[41]

Stansbury DE, Naselaris T, Gallant JL. 2013. Natural scene statistics account for the representation of scene categories in human visual cortex. Neuron 79:1025−34

doi: 10.1016/j.neuron.2013.06.034
[42]

Lowe MX, Rajsic J, Ferber S, Walther DB. 2018. Discriminating scene categories from brain activity within 100 milliseconds. Cortex 106:275−87

doi: 10.1016/j.cortex.2018.06.006
[43]

Cheng YP, Nordin AD. 2025. Effects of matched and mismatched visual flow and gait speeds on human electrocortical spectral power. Brain Sciences 15:531

doi: 10.3390/brainsci15050531
[44]

Delorme A, Makeig S. 2004. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods 134:9−21

doi: 10.1016/j.jneumeth.2003.10.009
[45]

Bigdely-Shamlo N, Mullen T, Kothe C, Su KM, Robbins KA. 2015. The PREP pipeline: standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics 9:16

doi: 10.3389/fninf.2015.00016
[46]

Nordin AD, Hairston WD, Ferris DP. 2018. Dual-electrode motion artifact cancellation for mobile electroencephalography. Journal of Neural Engineering 15:056024

doi: 10.1088/1741-2552/aad7d7
[47]

Safieddine D, Kachenoura A, Albera L, Birot G, Karfoul A, et al. 2012. Removal of muscle artifact from EEG data: comparison between stochastic (ICA and CCA) and deterministic (EMD and wavelet-based) approaches. EURASIP Journal on Advances in Signal Processing 2012:127

doi: 10.1186/1687-6180-2012-1
[48]

Roy V, Shukla S, Shukla PK, Rawat P. 2017. Gaussian elimination-based novel canonical correlation analysis method for EEG motion artifact removal. Journal of Healthcare Engineering 2017:9674712

doi: 10.1155/2017/9674712
[49]

Richer N, Downey RJ, Nordin AD, Hairston WD, Ferris DP. 2019. Adding neck muscle activity to a head phantom device to validate mobile EEG muscle and motion artifact removal. 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), 20−23 March 2019, San Francisco, CA, USA. IEEE. pp. 275−78 doi: 10.1109/ner.2019.8716959

[50]

Richer N, Downey RJ, Hairston WD, Ferris DP, Nordin AD. 2020. Motion and muscle artifact removal validation using an electrical head phantom, robotic motion platform, and dual layer mobile EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering 28:1825−35

doi: 10.1109/TNSRE.2020.3000971
[51]

Palmer JA, Kreutz-Delgado K, Makeig S. 2012. AMICA: an adaptive mixture of independent component analyzers with shared components. Technical Report, Swartz Center for Computational Neuroscience, University of California San Diego, USA https://sccn.ucsd.edu/~jason/amica_a.pdf

[52]

Pion-Tonachini L, Kreutz-Delgado K, Makeig S. 2019. ICLabel: an automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 198:181−97

doi: 10.1016/j.neuroimage.2019.05.026
[53]

Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, et al. 2020. Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience 23:1655−65

doi: 10.1038/s41593-020-00744-x
[54]

Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. 2014. EEG beta suppression and low gamma modulation are different elements of human upright walking. Frontiers in Human Neuroscience 8:485

doi: 10.3389/fnhum.2014.00485
[55]

Peterson SM, Ferris DP. 2018. Differentiation in theta and beta electrocortical activity between visual and physical perturbations to walking and standing balance. eNeuro 5:ENEURO.0207-18.2018

doi: 10.1523/ENEURO.0207-18.2018
[56]

Freedman DJ, Ibos G. 2018. An integrative framework for sensory, motor, and cognitive functions of the posterior parietal cortex. Neuron 97:1219−34

doi: 10.1016/j.neuron.2018.01.044
[57]

Beloozerova IN, Sirota MG. 2003. Integration of motor and visual information in the parietal area 5 during locomotion. Journal of Neurophysiology 90:961−71

doi: 10.1152/jn.01147.2002
[58]

Aghajan ZM, Schuette P, Fields TA, Tran ME, Siddiqui SM, et al. 2017. Theta oscillations in the human medial temporal lobe during real-world ambulatory movement. Current Biology 27:3743−3751.e3

doi: 10.1016/j.cub.2017.10.062
[59]

Caplan JB, Madsen JR, Schulze-Bonhage A, Aschenbrenner-Scheibe R, Newman EL, et al. 2003. Human θ oscillations related to sensorimotor integration and spatial learning. The Journal of Neuroscience 23:4726−36

doi: 10.1523/JNEUROSCI.23-11-04726.2003
[60]

Ekstrom AD, Caplan JB, Ho E, Shattuck K, Fried I, et al. 2005. Human hippocampal theta activity during virtual navigation. Hippocampus 15:881−89

doi: 10.1002/hipo.20109
[61]

Watrous AJ, Fried I, Ekstrom AD. 2011. Behavioral correlates of human hippocampal delta and theta oscillations during navigation. Journal of Neurophysiology 105:1747−55

doi: 10.1152/jn.00921.2010
[62]

Whitlock JR, Sutherland RJ, Witter MP, Moser MB, Moser EI. 2008. Navigating from hippocampus to parietal cortex. Proceedings of the National Academy of Science 105:14755−62

doi: 10.1073/pnas.0804216105
[63]

Cruikshank LC, Singhal A, Hueppelsheuser M, Caplan JB. 2012. Theta oscillations reflect a putative neural mechanism for human sensorimotor integration. Journal of Neurophysiology 107:65−77

doi: 10.1152/jn.00893.2010
[64]

Proteau L, Masson G. 1997. Visual perception modifies goal-directed movement control: supporting evidence from a visual perturbation paradigm. The Quarterly Journal of Experimental Psychology A, Human Experimental Psychology 50:726−41

doi: 10.1080/713755729
[65]

Caroux L, Le Bigot L, Vibert N. 2013. Impact of the motion and visual complexity of the background on players' performance in video game-like displays. Ergonomics 56:1863−76

doi: 10.1080/00140139.2013.847214
[66]

Song S, Nordin AD. 2025. Cortical processing and lower limb muscle activity increase during bodyweight supported treadmill locomotion underwater compared to on-land. IEEE Transactions on Neural Systems and Rehabilitation Engineering 33:1729−39

[67]

Assländer L, Peterka RJ. 2014. Sensory reweighting dynamics in human postural control. Journal of Neurophysiology 111:1852−64

doi: 10.1152/jn.00669.2013
[68]

Assländer L, Peterka RJ. 2016. Sensory reweighting dynamics following removal and addition of visual and proprioceptive cues. Journal of Neurophysiology 116:272−85

doi: 10.1152/jn.01145.2015
[69]

Mergner T, Maurer C, Peterka RJ. 2003. A multisensory posture control model of human upright stance. Progress in Brain Research 142:189−201

doi: 10.1016/S0079-6123(03)42014-1
[70]

Rinaldi NM, Polastri PF, Barela JA. 2009. Age-related changes in postural control sensory reweighting. Neuroscience Letters 467:225−29

doi: 10.1016/j.neulet.2009.10.042
[71]

Pasma JH, Engelhart D, Maier AB, Schouten AC, van der Kooij H, et al. 2015. Changes in sensory reweighting of proprioceptive information during standing balance with age and disease. Journal of Neurophysiology 114:3220−33

doi: 10.1152/jn.00414.2015
[72]

Feller KJ, Peterka RJ, Horak FB. 2019. Sensory re-weighting for postural control in Parkinson’s disease. Frontiers in Human Neuroscience 13:126

doi: 10.3389/fnhum.2019.00126
[73]

Annese VF, Crepaldi M, Demarchi D, De Venuto D. 2016. A digital processor architecture for combined EEG/EMG falling risk prediction. Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), 14−18 March 2016, Dresden, Germany. IEEE. pp. 714−19 doi: 10.3850/9783981537079_0365