| [1] |
Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, et al. 2015. Legume crops phylogeny and genetic diversity for science and breeding. |
| [2] |
Zhang Y, Yang J, Rao GY. 2006. Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii benth. (Leguminosae: Papilionoideae), an amphicarpic species. |
| [3] |
Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, et al. 2019. Peg biology: deciphering the molecular regulations involved during peanut peg development. |
| [4] |
Peng Q, Wang H, Tong J, Kabir MH, Huang Z, et al. 2013. Effects of indole-3-acetic acid and auxin transport inhibitor on auxin distribution and development of peanut at pegging stage. |
| [5] |
Wang Y, Zhang M, Du P, Liu H, Zhang Z, et al. 2022. Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut (Arachis hypogaea L.). |
| [6] |
Lv Z, Zhou D, Shi X, Ren J, Zhang H, et al. 2023. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. |
| [7] |
Moctezuma E, Feldman LJ. 1998. Growth rates and auxin effects in graviresponding gynophores of the peanut, Arachis hypogaea (Fabaceae). |
| [8] |
Roychoudhry S, Kepinski S. 2015. Shoot and root branch growth angle control—the wonderfulness of lateralness. |
| [9] |
Moctezuma E. 1999. Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L.). |
| [10] |
Shlamovitz N, Ziv M, Zamski E. 1995. Light, dark and growth regulator involvement in groundnut (Arachis hypogaea L.) pod development. |
| [11] |
Zhu W, Chen X, Li H, Zhu F, Hong Y, et al. 2014. Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. |
| [12] |
Sun J, Zhang X, Fu C, Ahmad N, Zhao C, et al. 2023. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut. |
| [13] |
Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, et al. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. |
| [14] |
Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, et al. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. |
| [15] |
Ryu KH, Huang L, Kang HM, Schiefelbein J. 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. |
| [16] |
Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, et al. 2019. High-throughput single-cell transcriptome profiling of plant cell types. |
| [17] |
Zhang TQ, Xu ZG, Shang GD, Wang JW. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. |
| [18] |
Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. |
| [19] |
Liu Q, Liang Z, Feng D, Jiang S, Wang Y, et al. 2021. Transcriptional landscape of rice roots at the single-cell resolution. |
| [20] |
Zhang TQ, Chen Y, Wang JW. 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. |
| [21] |
Kang M, Choi Y, Kim H, Kim SG. 2022. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. |
| [22] |
Zang Y, Pei Y, Cong X, Ran F, Liu L, et al. 2023. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta crantz leaves. |
| [23] |
Li C, Zhang S, Yan X, Cheng P, Yu H. 2023. Single-nucleus sequencing deciphers developmental trajectories in rice pistils. |
| [24] |
Liu H, Hu D, Du P, Wang L, Liang X, et al. 2021. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). |
| [25] |
Du P, Deng Q, Wang W, Garg V, Lu Q, et al. 2023. scRNA-seq reveals the mechanism of Fatty Acid Desaturase 2 mutation to repress leaf growth in peanut (Arachis hypogaea L.). |
| [26] |
Liu H, Guo Z, Gangurde SS, Garg V, Deng Q, et al. 2024. A single-nucleus resolution atlas of transcriptome and chromatin accessibility for peanut (Arachis hypogaea L.) leaves. |
| [27] |
Zhang H, Meltzer P, Davis S. 2013. RCircos: an R package for Circos 2D track plots. |
| [28] |
Liu Y, Li C, Han Y, Li R, Cui F, et al. 2022. Spatial transcriptome analysis on peanut tissues shed light on cell heterogeneity of the peg. |
| [29] |
Wolf FA, Hamey FK, Plass M, Jordi Solana, Joakim SD, et al. 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. |
| [30] |
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. |
| [31] |
Kong L, Song Q, Wei H, Wang Y, Lin M, et al. 2023. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. |
| [32] |
Zhao Z, Zhang Y, Liu X, Zhang X, Liu S, et al. 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. |
| [33] |
Porco S, Pěnčík A, Rashed A, Voß U, Casanova-Sáez R, et al. 2016. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. |
| [34] |
Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA, et al. 2018. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. |
| [35] |
Di DW, Zhang C, Luo P, An CW, Guo GQ. 2016. The biosynthesis of auxin: how many paths truly lead to IAA? |
| [36] |
Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, et al. 2019. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. |
| [37] |
Han X, Zhou Z, Fei L, Sun H, Wang R, et al. 2020. Construction of a human cell landscape at single-cell level. |
| [38] |
Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, et al. 2022. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. |
| [39] |
Hahn O, Foltz AG, Atkins M, Kedir B, Moran-Losada P, et al. 2023. Atlas of the aging mouse brain reveals white matter as vulnerable foci. |
| [40] |
Cheng J, Smyth GK, Chen Y. 2023. Unraveling the timeline of gene expression: a pseudotemporal trajectory analysis of single-cell RNA sequencing data. |
| [41] |
Gao C, Wang P, Zhao S, Zhao C, Xia H, et al. 2017. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. |
| [42] |
Moctezuma E. 2003. The peanut gynophore: a developmental and physiological perspective. |
| [43] |
Konstantinova N, Korbei B, Luschnig C. 2021. Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response. |
| [44] |
Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, et al. 1998. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. |
| [45] |
Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O. 1998. Changes in auxin response from mutations in an AUX/IAA gene. |
| [46] |
Blakeslee JJ, Peer WA, Murphy AS. 2005. Auxin transport. |
| [47] |
Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. 2021. PIN-mediated polar auxin transport regulations in plant tropic responses. |
| [48] |
Hammes UZ, Pedersen BP. 2024. Structure and function of auxin transporters. |
| [49] |
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, et al. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. |
| [50] |
Marchant A, Kargul J, May ST, Muller P, Delbarre A, et al. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. |
| [51] |
Cai Y, Huang L, Song Y, Yuan Y, Xu S, et al. 2023. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. |
| [52] |
Chen X, Li H, Pandey MK, Yang Q, Wang X, et al. 2016. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. |
| [53] |
Chen T, Chen X, Zhang S, Zhu J, Tang B, et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. |