[1]

Smýkal P, Coyne CJ, Ambrose MJ, Maxted N, Schaefer H, et al. 2015. Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences 34(1−3):43−104

doi: 10.1080/07352689.2014.897904
[2]

Zhang Y, Yang J, Rao GY. 2006. Comparative study on the aerial and subterranean flower development in Amphicarpaea edgeworthii benth. (Leguminosae: Papilionoideae), an amphicarpic species. International Journal of Plant Sciences 167(5):943−49

doi: 10.1086/505610
[3]

Kumar R, Pandey MK, Roychoudhry S, Nayyar H, Kepinski S, et al. 2019. Peg biology: deciphering the molecular regulations involved during peanut peg development. Frontiers in Plant Science 10:1289

doi: 10.3389/fpls.2019.01289
[4]

Peng Q, Wang H, Tong J, Kabir MH, Huang Z, et al. 2013. Effects of indole-3-acetic acid and auxin transport inhibitor on auxin distribution and development of peanut at pegging stage. Scientia Horticulturae 162:76−81

doi: 10.1016/j.scienta.2013.07.027
[5]

Wang Y, Zhang M, Du P, Liu H, Zhang Z, et al. 2022. Transcriptome analysis of pod mutant reveals plant hormones are important regulators in controlling pod size in peanut (Arachis hypogaea L.). PeerJ 10:e12965

doi: 10.7717/peerj.12965
[6]

Lv Z, Zhou D, Shi X, Ren J, Zhang H, et al. 2023. The determination of peanut (Arachis hypogaea L.) pod-sizes during the rapid-growth stage by phytohormones. BMC Plant Biology 23(1):371

doi: 10.1186/s12870-023-04382-w
[7]

Moctezuma E, Feldman LJ. 1998. Growth rates and auxin effects in graviresponding gynophores of the peanut, Arachis hypogaea (Fabaceae). American Journal of Botany 85(10):1369−76

doi: 10.2307/2446395
[8]

Roychoudhry S, Kepinski S. 2015. Shoot and root branch growth angle control—the wonderfulness of lateralness. Current Opinion in Plant Biology 23:124−31

doi: 10.1016/j.pbi.2014.12.004
[9]

Moctezuma E. 1999. Changes in auxin patterns in developing gynophores of the peanut plant (Arachis hypogaea L.). Annals of Botany 83(3):235−42

doi: 10.1006/anbo.1998.0814
[10]

Shlamovitz N, Ziv M, Zamski E. 1995. Light, dark and growth regulator involvement in groundnut (Arachis hypogaea L.) pod development. Plant Growth Regulation 16(1):37−42

doi: 10.1007/BF00040505
[11]

Zhu W, Chen X, Li H, Zhu F, Hong Y, et al. 2014. Comparative transcriptome analysis of aerial and subterranean pods development provides insights into seed abortion in peanut. Plant Molecular Biology 85(4):395−409

doi: 10.1007/s11103-014-0193-x
[12]

Sun J, Zhang X, Fu C, Ahmad N, Zhao C, et al. 2023. Genome-wide identification and expression analysis of GA20ox and GA3ox genes during pod development in peanut. PeerJ 11:e16279

doi: 10.7717/peerj.16279
[13]

Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, et al. 2019. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. Developmental Cell 48(6):840−852.e5

doi: 10.1016/j.devcel.2019.02.022
[14]

Jean-Baptiste K, McFaline-Figueroa JL, Alexandre CM, Dorrity MW, Saunders L, et al. 2019. Dynamics of gene expression in single root cells of Arabidopsis thaliana. The Plant Cell 31(5):993−1011

doi: 10.1105/tpc.18.00785
[15]

Ryu KH, Huang L, Kang HM, Schiefelbein J. 2019. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. Plant Physiology 179(4):1444−56

doi: 10.1104/pp.18.01482
[16]

Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, et al. 2019. High-throughput single-cell transcriptome profiling of plant cell types. Cell Reports 27(7):2241−2247.e4

doi: 10.1016/j.celrep.2019.04.054
[17]

Zhang TQ, Xu ZG, Shang GD, Wang JW. 2019. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. Molecular Plant 12(5):648−60

doi: 10.1016/j.molp.2019.04.004
[18]

Satterlee JW, Strable J, Scanlon MJ. 2020. Plant stem-cell organization and differentiation at single-cell resolution. Proceedings of the National Academy of Sciences of the United States of America 117(52):33689−99

doi: 10.1073/pnas.2018788117
[19]

Liu Q, Liang Z, Feng D, Jiang S, Wang Y, et al. 2021. Transcriptional landscape of rice roots at the single-cell resolution. Molecular Plant 14(3):384−94

doi: 10.1016/j.molp.2020.12.014
[20]

Zhang TQ, Chen Y, Wang JW. 2021. A single-cell analysis of the Arabidopsis vegetative shoot apex. Developmental Cell 56(7):1056−1074.e8

doi: 10.1016/j.devcel.2021.02.021
[21]

Kang M, Choi Y, Kim H, Kim SG. 2022. Single-cell RNA-sequencing of Nicotiana attenuata corolla cells reveals the biosynthetic pathway of a floral scent. New Phytologist 234(2):527−44

doi: 10.1111/nph.17992
[22]

Zang Y, Pei Y, Cong X, Ran F, Liu L, et al. 2023. Single-cell RNA-sequencing profiles reveal the developmental landscape of the Manihot esculenta crantz leaves. Plant Physiology 194(1):456−74

doi: 10.1093/plphys/kiad500
[23]

Li C, Zhang S, Yan X, Cheng P, Yu H. 2023. Single-nucleus sequencing deciphers developmental trajectories in rice pistils. Developmental Cell 58(8):694−708.e4

doi: 10.1016/j.devcel.2023.03.004
[24]

Liu H, Hu D, Du P, Wang L, Liang X, et al. 2021. Single-cell RNA-seq describes the transcriptome landscape and identifies critical transcription factors in the leaf blade of the allotetraploid peanut (Arachis hypogaea L.). Plant Biotechnology Journal 19(11):2261−76

doi: 10.1111/pbi.13656
[25]

Du P, Deng Q, Wang W, Garg V, Lu Q, et al. 2023. scRNA-seq reveals the mechanism of Fatty Acid Desaturase 2 mutation to repress leaf growth in peanut (Arachis hypogaea L.). Cells 12(18):2305

doi: 10.3390/cells12182305
[26]

Liu H, Guo Z, Gangurde SS, Garg V, Deng Q, et al. 2024. A single-nucleus resolution atlas of transcriptome and chromatin accessibility for peanut (Arachis hypogaea L.) leaves. Advanced Biology 8:2300410

doi: 10.1002/adbi.202300410
[27]

Zhang H, Meltzer P, Davis S. 2013. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 14(1):244

doi: 10.1186/1471-2105-14-244
[28]

Liu Y, Li C, Han Y, Li R, Cui F, et al. 2022. Spatial transcriptome analysis on peanut tissues shed light on cell heterogeneity of the peg. Plant Biotechnology Journal 20(9):1648−50

doi: 10.1111/pbi.13884
[29]

Wolf FA, Hamey FK, Plass M, Jordi Solana, Joakim SD, et al. 2019. PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biology 20(1):59

doi: 10.1186/s13059-019-1663-x
[30]

Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819(2):86−96

doi: 10.1016/j.bbagrm.2011.08.004
[31]

Kong L, Song Q, Wei H, Wang Y, Lin M, et al. 2023. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytologist 240(5):1848−67

doi: 10.1111/nph.19251
[32]

Zhao Z, Zhang Y, Liu X, Zhang X, Liu S, et al. 2013. A role for a dioxygenase in auxin metabolism and reproductive development in rice. Developmental Cell 27(1):113−22

doi: 10.1016/j.devcel.2013.09.005
[33]

Porco S, Pěnčík A, Rashed A, Voß U, Casanova-Sáez R, et al. 2016. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113(39):11016−21

doi: 10.1073/pnas.1604375113
[34]

Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA, et al. 2018. Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of LHY binding targets. New Phytologist 220(3):893−907

doi: 10.1111/nph.15415
[35]

Di DW, Zhang C, Luo P, An CW, Guo GQ. 2016. The biosynthesis of auxin: how many paths truly lead to IAA? Plant Growth Regulation 78(3):275−85

doi: 10.1007/s10725-015-0103-5
[36]

Szabo PA, Levitin HM, Miron M, Snyder ME, Senda T, et al. 2019. Single-cell transcriptomics of human T cells reveals tissue and activation signatures in health and disease. Nature Communications 10(1):4706

doi: 10.1038/s41467-019-12464-3
[37]

Han X, Zhou Z, Fei L, Sun H, Wang R, et al. 2020. Construction of a human cell landscape at single-cell level. Nature 581(7808):303−9

doi: 10.1038/s41586-020-2157-4
[38]

Li H, Janssens J, De Waegeneer M, Kolluru SS, Davie K, et al. 2022. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375(6584):eabk2432

doi: 10.1126/science.abk2432
[39]

Hahn O, Foltz AG, Atkins M, Kedir B, Moran-Losada P, et al. 2023. Atlas of the aging mouse brain reveals white matter as vulnerable foci. Cell 186(19):4117−4133.e22

doi: 10.1016/j.cell.2023.07.027
[40]

Cheng J, Smyth GK, Chen Y. 2023. Unraveling the timeline of gene expression: a pseudotemporal trajectory analysis of single-cell RNA sequencing data. F1000Research 12:684

doi: 10.12688/f1000research.134078.1
[41]

Gao C, Wang P, Zhao S, Zhao C, Xia H, et al. 2017. Small RNA profiling and degradome analysis reveal regulation of microRNA in peanut embryogenesis and early pod development. BMC Genomics 18(1):220

doi: 10.1186/s12864-017-3587-8
[42]

Moctezuma E. 2003. The peanut gynophore: a developmental and physiological perspective. Canadian Journal of Botany 81(3):183−90

doi: 10.1139/b03-024
[43]

Konstantinova N, Korbei B, Luschnig C. 2021. Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response. International Journal of Molecular Sciences 22(5):2749

doi: 10.3390/ijms22052749
[44]

Chen R, Hilson P, Sedbrook J, Rosen E, Caspar T, et al. 1998. The Arabidopsis thaliana AGRAVITROPIC 1 gene encodes a component of the polar-auxin-transport efflux carrier. Proceedings of the National Academy of Sciences of the United States of America 95(25):15112−17

doi: 10.1073/pnas.95.25.15112
[45]

Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O. 1998. Changes in auxin response from mutations in an AUX/IAA gene. Science 279(5355):1371−73

doi: 10.1126/science.279.5355.1371
[46]

Blakeslee JJ, Peer WA, Murphy AS. 2005. Auxin transport. Current Opinion in Plant Biology 8(5):494−500

doi: 10.1016/j.pbi.2005.07.014
[47]

Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. 2021. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist 232(2):510−22

doi: 10.1111/nph.17617
[48]

Hammes UZ, Pedersen BP. 2024. Structure and function of auxin transporters. Annual Review of Plant Biology 75:185−209

doi: 10.1146/annurev-arplant-070523-034109
[49]

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, et al. 1996. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273(5277):948−50

doi: 10.1126/science.273.5277.948
[50]

Marchant A, Kargul J, May ST, Muller P, Delbarre A, et al. 1999. AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. The EMBO Journal 18(8):2066−73

doi: 10.1093/emboj/18.8.2066
[51]

Cai Y, Huang L, Song Y, Yuan Y, Xu S, et al. 2023. LAZY3 interacts with LAZY2 to regulate tiller angle by modulating shoot gravity perception in rice. Plant Biotechnology Journal 21(6):1217−28

doi: 10.1111/pbi.14031
[52]

Chen X, Li H, Pandey MK, Yang Q, Wang X, et al. 2016. Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. Proceedings of the National Academy of Sciences of the United States of America 113(24):6785−90

doi: 10.1073/pnas.1600899113
[53]

Chen T, Chen X, Zhang S, Zhu J, Tang B, et al. 2021. The genome sequence archive family: toward explosive data growth and diverse data types. Genomics, Proteomics & Bioinformatics 19(4):578−83

doi: 10.1016/j.gpb.2021.08.001