[1]

Knowles R. 1982. Denitrification. Microbiological Reviews 46:43−70

doi: 10.1128/mr.46.1.43-70.1982
[2]

Bonachela JA. 2024. Viral plasticity facilitates host diversity in challenging environments. Nature Communications 15:7473

doi: 10.1038/s41467-024-51344-3
[3]

Xu Q, Zhang H, Vandenkoornhuyse P, Guo S, Kuzyakov Y, et al. 2024. Carbon starvation raises capacities in bacterial antibiotic resistance and viral auxiliary carbon metabolism in soils. Proceedings of the National Academy of Sciences of the United States of America 121:e2318160121

doi: 10.1073/pnas.2318160121
[4]

Liu C, Liao H, Gao T, Ai C, Tang X, et al. 2024. Deciphering the hidden role of soil viruses in nitrogen cycling revealed by metagenomic stable isotope probing. The Innovation Geoscience 2:100101

doi: 10.59717/j.xinn-geo.2024.100101
[5]

Liao H, Liu C, Ai C, Gao T, Yang Q, et al. 2023. Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting. The ISME Journal 17:916−930

doi: 10.1038/s41396-023-01404-1
[6]

Tong D, Wang Y, Yu H, Shen H, Dahlgren RA, et al. 2023. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil. The ISME Journal 17:1247−1256

doi: 10.1038/s41396-023-01438-5
[7]

Huang X, Braga LP, Ding C, Yang B, Ge T, et al. 2024. Impact of viruses on prokaryotic communities and greenhouse gas emissions in agricultural soils. Advanced Science 11:2407223

doi: 10.1002/advs.202407223
[8]

Hu H, Chen D, He J. 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiology Reviews 39:729−749

doi: 10.1093/femsre/fuv021
[9]

Zhou Z, Liang X, Zhang N, Xie N, Huang Y, et al. 2024. The impact of soil viruses on organic carbon mineralization and microbial biomass turnover. Applied Soil Ecology 202:105554

doi: 10.1016/j.apsoil.2024.105554
[10]

Qin S, Clough T, Luo J, Wrage-Mönnig N, Oenema O, et al. 2017. Perturbation-free measurement of in situ di-nitrogen emissions from denitrification in nitrate-rich aquatic ecosystems. Water Research 109:94−101

doi: 10.1016/j.watres.2016.11.035
[11]

Sokol NW, Slessarev E, Marschmann GL, Nicolas A, Blazewicz SJ, et al. 2022. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nature Reviews Microbiology 20:415−430

doi: 10.1038/s41579-022-00695-z
[12]

Liang J, Feng S, Lu J, Wang X, Li F, et al. 2024. Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages. Nature Communications 15:2827

doi: 10.1038/s41467-024-47214-7
[13]

Osburn ED, Baer SG, Evans SE, McBride SG, Strickland MS. 2024. Effects of experimentally elevated virus abundance on soil carbon cycling across varying ecosystem types. Soil Biology and Biochemistry 198:109556

doi: 10.1016/j.soilbio.2024.109556
[14]

Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, et al. 2018. Soil viruses are underexplored players in ecosystem carbon processing. MSystems 3:e00076-18

doi: 10.1128/msystems.00076-18
[15]

Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, et al. 2018. Host-linked soil viral ecology along a permafrost thaw gradient. Nature Microbiology 3:870−880

doi: 10.1038/s41564-018-0190-y