[1]

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20130164

doi: 10.1098/rstb.2013.0164
[2]

Wollheim WM, Vörösmarty CJ, Bouwman AF, Green P, Harrison J, et al. 2008. Global N removal by freshwater aquatic systems using a spatially distributed, within-basin approach. Global Biogeochemical Cycles 22:GB2026

doi: 10.1029/2007GB002963
[3]

Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, et al. 2009. Ecology controlling eutrophication: nitrogen and phosphorus. Science 323:1014−1015

doi: 10.1126/science.1167755
[4]

Xiong Z, Guo L, Zhang Q, Liu G, Liu W. 2017. Edaphic conditions regulate denitrification directly and indirectly by altering denitrifier abundance in wetlands along the Han River, China. Environmental Science & Technology 51:5483−5491

doi: 10.1021/acs.est.6b06521
[5]

Yao L, Jiang X, Chen C, Liu G, Liu W. 2016. Within-lake variability and environmental controls of sediment denitrification and associated N2O production in a shallow eutrophic lake. Ecological Engineering 97:251−257

doi: 10.1016/j.ecoleng.2016.10.023
[6]

Mulder A, van de Graaf AA, Robertson LA, Kuenen JG. 1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiology Ecology 16:177−183

doi: 10.1016/0168-6496(94)00081-7
[7]

Jetten MS, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UG, et al. 1998. The anaerobic oxidation of ammonium. FEMS Microbiology Reviews 22(5):421−437

doi: 10.1016/S0168-6445(98)00023-0
[8]

Koop-Jakobsen K, Giblin AE. 2009. Anammox in tidal marsh sediments: The role of salinity, nitrogen loading, and marsh vegetation. Estuaries and Coasts 32(2):238−245

doi: 10.1007/s12237-008-9131-y
[9]

Deng D, He G, Ding B, Liu W, Yang Z, et al. 2024. Denitrification dominates dissimilatory nitrate reduction across global natural ecosystems. Global Change Biology 30:e17256

doi: 10.1111/gcb.17256
[10]

Pinay G, Gumiero B, Tabacchi E, Gimenez O, Tabacchi-Planty AM, et al. 2007. Patterns of denitrification rates in European alluvial soils under various hydrological regimes. Freshwater Biology 52(2):252−266

doi: 10.1111/j.1365-2427.2006.01680.x
[11]

Brin LD, Giblin AE, Rich JJ. 2014. Environmental controls of anammox and denitrification in southern New England estuarine and shelf sediments. Limnology and Oceanography 59:851−860

doi: 10.4319/lo.2014.59.3.0851
[12]

Zheng Y, Jiang X, Hou L, Liu M, Lin X, et al. 2016. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient. Journal of Geophysical Research-Biogeosciences 121(6):1632−1645

doi: 10.1002/2015JG003300
[13]

Wu G, Li X, Zhou SYD, Liu X, Lie Z, et al. 2025. Soil organic carbon sources exhibit different patterns with stand age in rhizosphere and non-rhizosphere soils. GATENA 248:108579

doi: 10.1016/j.catena.2024.108579
[14]

Zhang M, Peng Y, Yan P, Huang J, He S, et al. 2022. Molecular analysis of microbial nitrogen transformation and removal potential in the plant rhizosphere of artificial tidal wetlands across salinity gradients. Environmental Research 215:114235

doi: 10.1016/j.envres.2022.114235
[15]

Guo M, Yang G, Meng X, Zhang T, Li C, et al. 2023. Illuminating plant-microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? Environment International 179:108144

doi: 10.1016/j.envint.2023.108144
[16]

Li X, Li Y, Wu J. 2023. Different in root exudates and rhizosphere microorganisms effect on nitrogen removal between three emergent aquatic plants in surface flow constructed wetlands. Ghemosphere 337:139422

doi: 10.1016/j.chemosphere.2023.139422
[17]

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11:789−799

doi: 10.1038/nrmicro3109
[18]

Risgaard-Petersen N, Jensen K. 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography 42(3):529−537

doi: 10.4319/lo.1997.42.3.0529
[19]

Racchetti E, Longhi D, Ribaudo C, Soana E, Bartoli M. 2017. Nitrogen uptake and coupled nitrification-denitrification in riverine sediments with benthic microalgae and rooted macrophytes. Aquatic Sciences 79(3):487−505

doi: 10.1007/s00027-016-0512-1
[20]

Yin X, Lu J, Wang Y, Liu G, Hua Y, et al. 2020. The abundance of nirS-type denitrifiers and anammox bacteria in rhizospheres was affected by the organic acids secreted from roots of submerged macrophytes. Chemosphere 240:124903

doi: 10.1016/j.chemosphere.2019.124903
[21]

Xia X, Zhang S, Li S, Zhang L, Wang G, et al. 2018. The cycle of nitrogen in river systems: sources, transformation, and flux. Environmental Science-Processes & Impacts 20(6):863−891

doi: 10.1039/C8EM00042E
[22]

Kim H, Bae HS, Reddy KR, Ogram A. 2016. Distributions, abundances and activities of microbes associated with the nitrogen cycle in riparian and stream sediments of a river tributary. Water Research 106:51−61

doi: 10.1016/j.watres.2016.09.048
[23]

Webster AJ, Groffman PM, Cadenasso ML. 2018. Controls on denitrification potential in nitrate-rich waterways and riparian zones of an irrigated agricultural setting. Ecological Applications 28:1055−1067

doi: 10.1002/eap.1709
[24]

Wang S, Wang W, Zhao S, Wang X, Hefting MM, et al. 2019. Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones. Water Research 162:139−150

doi: 10.1016/j.watres.2019.06.052
[25]

Xiong Z, Li S, Yao L, Liu G, Zhang Q, et al. 2015. Topography and land use effects on spatial variability of soil denitrification and related soil properties in riparian wetlands. Ecological Engineering 83:437−443

doi: 10.1016/j.ecoleng.2015.04.094
[26]

Thamdrup B, Dalsgaard T. 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology 68:1312−1318

doi: 10.1128/AEM.68.3.1312-1318.2002
[27]

Risgaard-Petersen N, Nielsen LP, Rysgaard S, Dalsgaard T, Meyer RL. 2003. Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnology and Oceanography - Methods 1:63−73

doi: 10.4319/lom.2003.1.63
[28]

Deng D, Pan Y, Liu G, Liu W, Ma L. 2020. Seeking the hotspots of nitrogen removal: a comparison of sediment denitrification rate and denitrifier abundance among wetland types with different hydrological conditions. Science of the Total Environment 737:140253

doi: 10.1016/j.scitotenv.2020.140253
[29]

Deng D, Ding B, He G, Ji M, Yang Y, et al. 2023. The contribution of anammox to nitrogen removal is greater in bulk soils than in rhizosphere soils in riparian wetlands along the Yangtze River. Global Biogeochemical Cycles 37(5):e2022GB007576

doi: 10.1029/2022GB007576
[30]

Deng DL, Yang ZJ, Yang YY, Wan WJ, Liu WZ, et al. 2024. Metagenomic insights into nitrogen-cycling microbial communities and their relationships with nitrogen removal potential in the Yangtze River. Water Research 265:122229

doi: 10.1016/j.watres.2024.122229
[31]

Wallenstein MD, Myrold DD, Firestone M, Voytek M. 2006. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecological Applications 16(6):2143−2152

doi: 10.1890/1051-0761(2006)016[2143:ecodca]2.0.co;2
[32]

Jiang X, Yao L, Guo L, Liu G, Liu W. 2017. Multi-scale factors affecting composition, diversity, and abundance of sediment denitrifying microorganisms in Yangtze lakes. Applied Microbiology and Biotechnology 101:8015−8027

doi: 10.1007/s00253-017-8537-5
[33]

Liu W, Wang Z, Zhang Q, Cheng X, Lu J, et al. 2015. Sediment denitrification and nitrous oxide production in Chinese plateau lakes with varying watershed land uses. Biogeochemistry 123:379−390

doi: 10.1007/s10533-015-0072-9
[34]

Jiang XL, Liu WZ, Yao LG, Liu GH, Yang YY. 2020. The roles of environmental variation and spatial distance in explaining diversity and biogeography of soil denitrifying communities in remote Tibetan wetlands. FEMS Microbiology Ecology 96(5):fiaa063

doi: 10.1093/femsec/fiaa063
[35]

Deng D, He G, Yang Z, Xiong X, Liu W. 2024. Activity and community structure of nitrifiers and denitrifiers in nitrogen-polluted rivers along a latitudinal gradient. Water Research, 254:121317

doi: 10.1016/j.watres.2024.121317
[36]

Liu W, Jiang X, Zhang Q, Li F, Liu G. 2018. Has submerged vegetation loss altered sediment denitrification, N2O production and denitrifying microbial communities in subtropical lakes? Global Biogeochemical Cycles 32:1195−1207

doi: 10.1029/2018GB005978
[37]

Liu W, Liu G, Liu H, Song Y, Zhang Q. 2013. Subtropical reservoir shorelines have reduced plant species and functional richness compared with adjacent riparian wetlands. Environmental Research Letters 8(4):044007

doi: 10.1088/1748-9326/8/4/044007
[38]

Ward JV. 1989. The four-dimensional nature of lotic ecosystems. Journal of the North American Benthological Society 8:2−8

doi: 10.2307/1467397
[39]

Rich JJ, Myrold DD. 2004. Community composition and activities of denitrifying bacteria from adjacent agricultural soil, riparian soil, and creek sediment in Oregon, USA. Soil Biology & Biochemistry 35(9):1431−1441

doi: 10.1016/j.soilbio.2004.03.008
[40]

Waters ER, Morse JL, Bettez ND, Groffman PM. 2014. Differential carbon and nitrogen controls of denitrification in riparian zones and streams along an urban to exurban gradient. Journal of Environmental Quality 43:955−963

doi: 10.2134/jeq2013.12.0504
[41]

Tomasek A, Kozarek JL, Hondzo M, Lurndahl N, Sadowsky MJ, et al. 2017. Environmental drivers of denitrification rates and denitrifying gene abundances in channels and riparian areas. Water Resources Research 53(8):6523−6538

doi: 10.1002/2016WR019566
[42]

Wang S, Pi Y, Song Y, Jiang Y, Zhou L, et al. 2020. Hotspot of dissimilatory nitrate reduction to ammonium (DNRA) process in freshwater sediments of riparian zones. Water Research 173:115539

doi: 10.1016/j.watres.2020.115539
[43]

Shen LD, Wu HS, Liu X, Li J. 2017. Vertical distribution and activity of anaerobic ammonium-oxidising bacteria in a vegetable field. Geoderma 288:56−63

doi: 10.1016/j.geoderma.2016.11.007
[44]

Kuenen JG. 2008. Anammox bacteria: from discovery to application. Nature Reviews Microbiology 6(4):320−326

doi: 10.1038/nrmicro1857
[45]

Shen LD, Liu S, He ZF, Lian X, Huang Q, et al. 2015. Depth-specific distribution and importance of nitrite-dependent anaerobic ammonium and methane-oxidising bacteria in an urban wetland. Soil Biology & Biochemistry 83:43−51

doi: 10.1016/j.soilbio.2015.01.010
[46]

Zhou S, Borjigin S, Riya S, Terada A, Hosomi M. 2014. The relationship between anammox and denitrification in the sediment of an inland river. Science of the Total Environment 490:1029−1036

doi: 10.1016/j.scitotenv.2014.05.096
[47]

Zhu G, Wang S, Li Y, Zhuang L, Zhao S, et al. 2018. Microbial pathways for nitrogen loss in an upland soil. Environmental Microbiology 20(5):1723−1738

doi: 10.1111/1462-2920.14098
[48]

Wang S, Zhu G, Zhuang L, Li Y, Liu L, et al. 2020. Anaerobic ammonium oxidation is a major N-sink in aquifer systems around the world. ISME Journal 14(1):151−163

doi: 10.1038/s41396-019-0513-x
[49]

Hou M, Xu R, Lin Z, Xi D, Wang Y, et al. 2020. Vertical characteristics of anaerobic oxidation of ammonium (anammox) in a coastal saline-alkali field. Soil & Tillage Research 198:104531

doi: 10.1016/j.still.2019.104531
[50]

Bruesewitz DA, Hamilton DP, Schipper LA. 2011. Denitrification potential in lake sediment increases across a gradient of catchment agriculture. Ecosystems 14:341−352

doi: 10.1007/s10021-011-9413-2
[51]

Liu H, Xiong Z, Jiang X, Liu G, Liu W. 2016. Heavy metal concentrations in riparian soils along the Han River, China: the importance of soil properties, topography and upland land use. Ecological Engineering 97:545−552

doi: 10.1016/j.ecoleng.2016.10.060
[52]

Burgin AJ, Hamilton SK. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5(2):89−96

doi: 10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2
[53]

Devol AH. 2003. Nitrogen cycle - Solution to a marine mystery. Nature 422(6932):575−576

doi: 10.1038/422575a
[54]

Slone LA, McCarthy MJ, Myers JA, Hammerschmidt CR, Newell SE. 2018. River sediment nitrogen removal and recycling within an agricultural Midwestern USA watershed. Freshwater Science 37(1):1−12

doi: 10.1086/696610
[55]

Zhao Y, Xia Y, Kana T, Wu Y, Li X, et al. 2013. Seasonal variation and controlling factors of anaerobic ammonium oxidation in freshwater river sediments in the Taihu Lake region of China. Chemosphere 93(9):2124−2131

doi: 10.1016/j.chemosphere.2013.07.063
[56]

Li J, Yu S, Qin S. 2020. Removal capacities and environmental constrains of denitrification and anammox processes in eutrophic riverine sediments. Water Air & Soil Pollution 231(6):16

doi: 10.1007/s11270-020-04593-z
[57]

Chen L, Liu S, Chen Q, Zhu G, Wu X, et al. 2019. Anammox response to natural and anthropogenic impacts over the Yangtze River. Science of the Total Environment 665:171−180

doi: 10.1016/j.scitotenv.2019.02.096
[58]

Lansdown K, McKew BA, Whitby C, Heppell CM, Dumbrell AJ, et al. 2016. Importance and controls of anaerobic ammonium oxidation influenced by riverbed geology. Nature Geoscience 9:357−360

doi: 10.1038/ngeo2684
[59]

He G, Deng D, Delgado-Baquerizo M, Liu W, Zhang Q. 2025. Global relative importance of denitrification and anammox in microbial nitrogen loss across terrestrial and aquatic ecosystems. Advanced Science 12(8):2406857

doi: 10.1002/advs.202406857
[60]

Pan B, Xia L, Lam SK, Wang E, Zhang Y, et al. 2022. A global synthesis of soil denitrification: driving factors and mitigation strategies. Agriculture, Ecosystems and Environment 327:107850

doi: 10.1016/j.agee.2021.107850
[61]

Li XF, Sardans J, Hou LJ, Gao DZ, Liu M, et al. 2019. Dissimilatory nitrate/nitrite reduction processes in river sediments across climatic gradient: influences of biogeochemical controls and climatic temperature regime. Journal of Geophysical Researc-Biogeosciences 124(7):2305−2320

doi: 10.1029/2019JG005045
[62]

Tan E, Zou W, Zheng Z, Yan X, Du M, et al. 2020. Warming stimulates sediment denitrification at the expense of anaerobic ammonium oxidation. Nature Climate Change 10(4):349−355

doi: 10.1038/s41558-020-0723-2
[63]

Li Q, Ji Q, Cao X, Zhang X, Yang Y, et al. 2025. Tree diversity-related soil P accumulation in high latitude temperate forests of China is regulated by soil C and N amounts as well as microbial network and denitrification genes. Catena 256:109062

doi: 10.1016/j.catena.2025.109062
[64]

Weber KA, Achenbach LA, Coates JD. 2006. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology 4(10):752−764

doi: 10.1038/nrmicro1490
[65]

Shuai W, Jaffé PR. 2019. Anaerobic ammonium oxidation coupled to iron reduction in constructed wetland mesocosms. Science of the Total Environment 648:984−992

doi: 10.1016/j.scitotenv.2018.08.189
[66]

Wang M, Hu R, Zhao J, Kuzyakov Y, Liu S. 2016. Iron oxidation affects nitrous oxide emissions via donating electrons to denitrification in paddy soils. Geoderma 271:173−180

doi: 10.1016/j.geoderma.2016.02.022
[67]

Zhu G, Xia C, Wang S, Zhou L, Liu L, et al. 2015. Occurrence, activity and contribution of anammox in some freshwater extreme environments. Environmental Microbiology Reports 7(6):961−969

doi: 10.1111/1758-2229.12341
[68]

Rysgaard S, Glud RN, Risgaard-Petersen N, Dalsgaard T. 2004. Denitrification and anammox activity in Arctic marine sediments. Limnology and Oceanography 49(5):1493−1502

doi: 10.4319/lo.2004.49.5.1493
[69]

Ma L, Jiang X, Liu G, Yao L, Liu W, et al. 2020. Environmental factors and microbial diversity and abundance jointly regulate soil nitrogen and carbon biogeochemical processes in Tibetan wetlands. Environmental Science & Technology 54:3267−3277

doi: 10.1021/acs.est.9b06716
[70]

Dandie CE, Wertz S, Leclair CL, Goyer C, Burton DL, et al. 2011. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiology Ecology 77(1):69−82

doi: 10.1111/j.1574-6941.2011.01084.x
[71]

Enwall K, Throbäck IN, Stenberg M, Söderström M, Hallin S. 2010. Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Applied and Environmental Microbiology 76(7):2243−2250

doi: 10.1128/aem.02197-09
[72]

Shan J, Zhao X, Sheng R, Xia YQ, Ti CP, et al. 2016. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions and influencing factors. Environmental Science & Technology 50(18):9972−9980

doi: 10.1021/acs.est.6b01765
[73]

Bai R, Xi D, He JZ, Hu HW, Fang YT, et al. 2015. Activity, abundance and community structure of anammox bacteria along depth profiles in three different paddy soils. Soil Biology & Biochemistry 91:212−221

doi: 10.1016/j.soilbio.2015.08.040
[74]

Wang S, Pi Y, Jiang Y, Pan H, Wang X, et al. 2020. Nitrate reduction in the reed rhizosphere of a riparian zone: from functional genes to activity and contribution. Environmental Research 180:108867

doi: 10.1016/j.envres.2019.108867
[75]

Zhu G, Wang S, Wang Y, Wang C, Risgaard-Petersen N, et al. 2011. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME Journal 5(12):1905−1912

doi: 10.1038/ismej.2011.63
[76]

Albright MBN, Timalsina B, Martiny JBH, Dunbar J. 2019. Comparative genomics of nitrogen cycling pathways in bacteria and Archaea. Microbial Ecology 77:597−606

doi: 10.1007/s00248-018-1239-4
[77]

Kartal B, Kuypers MMM, Lavik G, Schalk J, Op den Camp HJM, et al. 2007. Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology 9(3):635−642

doi: 10.1111/j.1462-2920.2006.01183.x