| [1] |
Chidambara Murthy KN, Rajasekaran T, Giridhar P, Ravishankar GA. 2006. Antioxidant property of Decalepis hamiltonii Wight & Arn. Indian Journal of Experimental Biology 44(10):832−37 |
| [2] |
Srivastava A, Harish SR, Shivanandappa T. 2006. Antioxidant activity of the roots of Decalepis hamiltonii (Wight & Arn.). |
| [3] |
Nagarajan S, Rao LJM, Gurudutt KN. 2001. Chemical composition of the volatiles of Decalepis hamiltonii (Wight & Arn). |
| [4] |
Sudha ML, Umashankar K, Ashwath Kumar K, Giridhar P, Prabahasankar P. 2023. Physical characteristics, acceptability and biochemical properties of biscuits using Decalepis hamiltonii tuber extract as a natural flavouring agent. |
| [5] |
Tontul I, Topuz A. 2017. Spray-drying of fruit and vegetable juices: effect of drying conditions on the product yield and physical properties. |
| [6] |
Sun-Waterhouse D, Wadhwa SS, Waterhouse GIN. 2013. Spray-drying microencapsulation of polyphenol bioactives: a comparative study using different natural fibre polymers as encapsulants. |
| [7] |
Coimbra PPS, de Souza Neves Cardoso F, de Andrade Gonçalves ÉCB. 2021. Spray-drying wall materials: relationship with bioactive compounds. |
| [8] |
Labuschagne P. 2018. Impact of wall material physicochemical characteristics on the stability of encapsulated phytochemicals: a review. |
| [9] |
Adhikari B, Howes T, Lecomte D, Bhandari BR. 2005. A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying. |
| [10] |
Jafari SM, Assadpoor E, He Y, Bhandari B. 2008. Encapsulation efficiency of food flavours and oils during spray drying. |
| [11] |
Fang Z, Bhandari B. 2010. Encapsulation of polyphenols–a review. |
| [12] |
Bagheri L, Madadlou A, Yarmand M, Mousavi ME. 2013. Nanoencapsulation of date palm pit extract in whey protein particles generated via desolvation method. |
| [13] |
Charve J, Reineccius GA. 2009. Encapsulation performance of proteins and traditional materials for spray dried flavors. |
| [14] |
Samborska K, Jedlińska A, Wiktor A, Derewiaka D, Wołosiak R, et al. 2019. The effect of low-temperature spray drying with dehumidified air on phenolic compounds, antioxidant activity, and aroma compounds of rapeseed honey powders. |
| [15] |
Hundre SY, Karthik P, Anandharamakrishnan C. 2015. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. |
| [16] |
Aguirre-Alonso RO, Morales-Guillermo M, Salgado-Cervantes MA, Robles-Olvera VJ, García-Alvarado MA, et al. 2019. Effect of process variables of spray drying employing heat pump and nitrogen on aromatic compound yield in powders obtained from vanilla (Vanilla planifolia Andrews) ethanolic extract. |
| [17] |
Calva-Estrada SJ, Mendoza MR, García O, Jiménez-Fernández VM, Jiménez M. 2018. Microencapsulation of vanilla (Vanilla planifolia Andrews) and powder characterization. |
| [18] |
Hernández-Fernández MÁ, García-Pinilla S, Ocampo-Salinas OI, Gutiérrez-López GF, Hernández-Sánchez H, et al. 2020. Microencapsulation of vanilla oleoresin (V. planifolia Andrews) by complex coacervation and spray drying: physicochemical and microstructural characterization. |
| [19] |
Jedlińska A, Samborska K, Janiszewska-Turak E, Witrowa-Rajchert D, Seuvre AM, et al. 2018. Physicochemical properties of vanilla and raspberry aromas microencapsulated in the industrial conditions by spray drying. |
| [20] |
Noshad M, Mohebbi M, Koocheki A, Shahidi F. 2015. Microencapsulation of vanillin by spray drying using soy protein isolate–maltodextrin as wall material. |
| [21] |
Ocampo-Salinas IO, Gómez-Aldapa CA, Castro-Rosas J, Vargas-León EA, Guzmán-Ortiz FA, et al. 2020. Development of wall material for the microencapsulation of natural vanilla extract by spray drying. |
| [22] |
Pradeep M, Kiran K, Giridhar P. 2016. A biotechnological perspective towards improvement of Decalepis hamiltonii: potential applications of its tubers and bioactive compounds of nutraceuticals for value addition. In Biotechnological Strategies for the Conservation of Medicinal and Ornamental Climbers, eds Shahzad A, Sharma S, Siddiqui S. Cham: Springer. pp. 217–38 doi: 10.1007/978-3-319-19288-8_8 |
| [23] |
Matam P, Parvatam G. 2017. Arbuscular mycorrhizal fungi promote enhanced growth, tuberous roots yield and root specific flavour 2-hydroxy-4-methoxybenzaldehyde content of Decalepis hamiltonii Wight & Arn. Acta Scientiarum Polonorum Hortorum Cultus 16:3−10 |
| [24] |
Umashankar K, Chandralekha A, Dandavate T, Tavanandi HA, Raghavarao KSMS. 2019. A nonconventional method for drying of Pseudomonas aeruginosa and its comparison with conventional methods. |
| [25] |
Karthik P, Anandharamakrishnan C. 2013. Microencapsulation of docosahexaenoic acid by spray-freeze-drying method and comparison of its stability with spray-drying and freeze-drying methods. |
| [26] |
Pradeep M, Shetty NP, Giridhar P. 2019. HPLC and ESI-MS analysis of vanillin analogue 2-hydroxy-4-methoxy benzaldehyde in swallow root – the influence of habitat heterogeneity on antioxidant potential. |
| [27] |
Sadasivam S, Manickam A. 2008. Biochemical methods, 3rd edition. New Delhi, India: New Age International Publishers |
| [28] |
Locatelli M, Gindro R, Travaglia F, Coïsson JD, Rinaldi M, et al. 2009. Study of the DPPH-scavenging activity: development of a free software for the correct interpretation of data. |
| [29] |
Kumar SS, Arya M, Nagbhushan P, Giridhar P, Shetty NP, et al. 2020. Evaluation of various drying methods on bioactives, ascorbic acid and antioxidant potentials of Talinum triangulare L., foliage. |
| [30] |
Ou B, Huang D, Hampsch-Woodill M, Flanagan JA, Deemer EK. 2002. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study. |
| [31] |
Aghbashlo M, Mobli H, Madadlou A, Rafiee S. 2013. Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. |
| [32] |
Würth R, Lonfat J, Kulozik U. 2019. Gelation of pre-renneted milk concentrate during spray drying and rehydration for microcapsule formation. |
| [33] |
Vega C, Kim EHJ, Chen XD, Roos YH. 2005. Solid-state characterization of spray-dried ice cream mixes. |
| [34] |
Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. 2007. Applications of spray-drying in microencapsulation of food ingredients: an overview. |
| [35] |
Comunian TA, da Silva Anthero AG, Bezerra EO, Moraes ICF, Hubinger MD. 2020. Encapsulation of pomegranate seed oil by emulsification followed by spray drying: evaluation of different biopolymers and their effect on particle properties. |
| [36] |
Ixtaina VY, Julio LM, Wagner JR, Nolasco SM, Tomás MC. 2015. Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. |
| [37] |
Neves MIL, Desobry-Banon S, Perrone IT, Desobry S, Petit J. 2019. Encapsulation of curcumin in milk powders by spray-drying: physicochemistry, rehydration properties, and stability during storage. |
| [38] |
Shamaei S, Seiiedlou SS, Aghbashlo M, Tsotsas E, Kharaghani A. 2017. Microencapsulation of walnut oil by spray drying: effects of wall material and drying conditions on physicochemical properties of microcapsules. |
| [39] |
Hogan SA, McNamee BF, O'Riordan ED, O'Sullivan M. 2001. Microencapsulating properties of sodium caseinate. |
| [40] |
Pudziuvelyte L, Marksa M, Jakstas V, Ivanauskas L, Kopustinskiene DM, et al. 2019. Microencapsulation of Elsholtzia ciliata herb ethanolic extract by spray-drying: impact of resistant-maltodextrin complemented with sodium caseinate, skim milk, and beta-cyclodextrin on the quality of spray-dried powders. |
| [41] |
Adhikari B, Howes T, Shrestha AK, Bhandari BR. 2007. Development of stickiness of whey protein isolate and lactose droplets during convective drying. |
| [42] |
Thangadurai D, Anitha S, Pullaiah T, Reddy PN, Ramachandraiah OS. 2002. Essential oil constituents and in vitro antimicrobial activity of Decalepis hamiltonii roots against foodborne pathogens. |
| [43] |
Pudziuvelyte L, Marksa M, Sosnowska K, Winnicka K, Morkuniene R, et al. 2020. Freeze-drying technique for microencapsulation of Elsholtzia ciliata ethanolic extract using different coating materials. |
| [44] |
Wu G, Hui X, Mu J, Gong X, Stipkovits L, et al. 2021. Functionalization of sodium caseinate fortified with blackcurrant concentrate via spray-drying and freeze-drying techniques: the nutritional properties of the fortified particles. |
| [45] |
Huang D, Ou B, Prior RL. 2005. The chemistry behind antioxidant capacity assays. |
| [46] |
Soare JR, Dinis TCP, Cunha AP, Almeida L. 1997. Antioxidant activities of some extracts of Thymus zygis. |
| [47] |
Ribeiro AM, Estevinho BN, Rocha F. 2019. Spray drying encapsulation of elderberry extract and evaluating the release and stability of phenolic compounds in encapsulated powders. |
| [48] |
Rosenberg M, Young SL. 1993. Whey proteins as microencapsulating agents - Microencapsulation of anhydrous milkfat-structure evaluation. Food Structure 12:4 |
| [49] |
Nesterenko A, Alric I, Silvestre F, Durrieu V. 2013. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. |
| [50] |
Ferrari CC, Marconi Germer SP, Alvim ID, de Aguirre JM. 2013. Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. |