[1]

Woo HR, Kim HJ, Lim PO, Nam HG. 2019. Leaf senescence: systems and dynamics aspects. Annual Review of Plant Biology 70:347−76

doi: 10.1146/annurev-arplant-050718-095859
[2]

Chen J, Li Y, Li Y, Li Y, Wang Y, et al. 2021. AUXIN RESPONSE FACTOR 18–HISTONE DEACETYLASE 6 module regulates floral organ identity in rose (Rosa hybrida). Plant Physiology 186:1074−87

doi: 10.1093/plphys/kiab130
[3]

Sun X, Qin M, Yu Q, Huang Z, Xiao Y, et al. 2021. Molecular understanding of postharvest flower opening and senescence. Molecular Horticulture 1:7

doi: 10.1186/s43897-021-00015-8
[4]

Kim J, Kim JH, Lyu JI, Woo HR, Lim PO. 2018. New insights into the regulation of leaf senescence in Arabidopsis. Journal of Experimental Botany 69:787−99

doi: 10.1093/jxb/erx287
[5]

Sade N, del Mar Rubio-Wilhelmi M, Umnajkitikorn K, Blumwald E. 2018. Stress-induced senescence and plant tolerance to abiotic stress. Journal of Experimental Botany 69:845−53

doi: 10.1093/jxb/erx235
[6]

Ma N, Ma C, Liu Y, Shahid MO, Wang C, et al. 2018. Petal senescence: a hormone view. Journal of Experimental Botany 69:719−32

doi: 10.1093/jxb/ery009
[7]

Lone ML, ul Haq A, Farooq S, Parveen S, Altaf F, et al. 2025. Flower senescence: a comprehensive update on hormonal regulation and molecular aspects of petal death. Postharvest Biology and Technology 220:113299

doi: 10.1016/j.postharvbio.2024.113299
[8]

Khan S, Alvi AF, Khan NA. 2024. Role of ethylene in the regulation of plant developmental processes. Stresses 4:28−53

doi: 10.3390/stresses4010003
[9]

Wang Y, Sun Z, Feng S, Yuan X, Zhong L, et al. 2022. The negative regulation of DcERF-1 on senescence of cut carnation. Acta Horticulturae Sinica 49:1313−26

doi: 10.16420/j.issn.0513-353x.2021-0478
[10]

Wang M, Ni C, Wang R, Zhong L, Cheng Y, et al. 2023. Variation in longevity of cut and in planta flowers of potted carnation varieties affected by their relationship with ethylene and water. Ornamental Plant Research 3:2

doi: 10.48130/opr-2023-0002
[11]

Wang M, Wang M, Ni C, Feng S, Wang Y, et al. 2024. Differences in ethylene sensitivity, expression of ethylene biosynthetic genes and vase life among carnation varieties. Ornamental Plant Research 4:e004

doi: 10.48130/opr-0024-0002
[12]

Wang M, Pi Z, Pan Z, Li X, Zhong L, et al. 2025. Studies on the mother flower carnation: past, present, and future. Horticulture Research 12:uhaf118

doi: 10.1093/hr/uhaf118
[13]

Wang H, Zhao C, Pan Z, Li X, Wang S, et al. 2025. Dynamic m6A RNA methylation correlates with ethylene-induced petal senescence and may modulate antioxidant and metabolic pathways in carnation (Dianthus caryophyllus L.). The Plant Journal 123:e70318

doi: 10.1111/tpj.70318
[14]

Ahmad Dar R, Nisar S, Tahir I. 2021. Ethylene: a key player in ethylene sensitive flower senescence: a review. Scientia Horticulturae 290:110491

doi: 10.1016/j.scienta.2021.110491
[15]

Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, et al. 2017. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science 8:475

doi: 10.3389/fpls.2017.00475
[16]

Parveen S, Altaf F, Farooq S, Lone ML, ul Haq A, et al. 2023. The swansong of petal cell death: insights into the mechanism and regulation of ethylene-mediated flower senescence. Journal of Experimental Botany 74:3961−74

doi: 10.1093/jxb/erad217
[17]

Farooq S, Lone ML, ul Haq A, Parveen S, Altaf F, et al. 2024. Signalling cascades choreographing petal cell death: implications for postharvest quality. Plant Molecular Biology 114:63

doi: 10.1007/s11103-024-01449-6
[18]

Zhang F, Wang L, Lim JY, Kim T, Pyo Y, et al. 2016. Phosphorylation of CBP20 links microRNA to root growth in the ethylene response. PLoS Genetics 12:e1006437

doi: 10.1371/journal.pgen.1006437
[19]

Zhang F, Qi B, Wang L, Zhao B, Rode S, et al. 2016. EIN2-dependent regulation of acetylation of histone H3K14 and non-canonical histone H3K23 in ethylene signalling. Nature Communications 7:13018

doi: 10.1038/ncomms13018
[20]

Zhang F, Wang L, Qi B, Zhao B, Ko EE, et al. 2017. EIN2 mediates direct regulation of histone acetylation in the ethylene response. Proceedings of the National Academy of Sciences of the United States of America 114:10274−79

doi: 10.1073/pnas.1707937114
[21]

Zhang F, Wang L, Ko EE, Shao K, Qiao H. 2018. Histone deacetylases SRT1 and SRT2 interact with ENAP1 to mediate ethylene-induced transcriptional repression. The Plant Cell 30:153−66

doi: 10.1105/tpc.17.00671
[22]

Wang L, Zhang F, Qiao H. 2020. Chromatin regulation in the response of ethylene: nuclear events in ethylene signaling. Small Methods 4:1900288

doi: 10.1002/smtd.201900288
[23]

Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. 2021. Ethylene signaling in rice and Arabidopsis: new regulators and mechanisms. Journal of Integrative Plant Biology 63:102−25

doi: 10.1111/jipb.13028
[24]

Mubarok S, Qonit MAH, Rahmat BPN, Budiarto R, Suminar E, et al. 2023. An overview of ethylene insensitive tomato mutants: advantages and disadvantages for postharvest fruit shelf-life and future perspective. Frontiers in Plant Science 14:1079052

doi: 10.3389/fpls.2023.1079052
[25]

Shibuya K. 2018. Molecular aspects of flower senescence and strategies to improve flower longevity. Breeding Science 68:99−108

doi: 10.1270/jsbbs.17081
[26]

Cocetta G, Natalini A. 2022. Ethylene: management and breeding for postharvest quality in vegetable crops. A review. Frontiers in Plant Science 13:968315

doi: 10.3389/fpls.2022.968315
[27]

Merchante C, Alonso JM, Stepanova AN. 2013. Ethylene signaling: simple ligand, complex regulation. Current Opinion in Plant Biology 16:554−60

doi: 10.1016/j.pbi.2013.08.001
[28]

Ju C, Chang C. 2015. Mechanistic insights in ethylene perception and signal transduction. Plant Physiology 169:85−95

doi: 10.1104/pp.15.00845
[29]

Yang SF, Hoffman NE. 1984. Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology 35:155−89

doi: 10.1146/annurev.pp.35.060184.001103
[30]

Ichimura K, Niki T. 2014. Ethylene production associated with petal senescence in carnation flowers is induced irrespective of the gynoecium. Journal of Plant Physiology 171:1679−84

doi: 10.1016/j.jplph.2014.08.006
[31]

Van Altvorst AC, Bovy AG. 1995. The role of ethylene in the senescence of carnation flowers, a review. Plant Growth Regulation 16:43−53

doi: 10.1007/BF00040506
[32]

Tanase K, Otsu S, Satoh S, Onozaki T. 2015. Expression levels of ethylene biosynthetic genes and senescence-related genes in carnation (Dianthus caryophyllus L.) with ultra-long-life flowers. Scientia Horticulturae 183:31−38

doi: 10.1016/j.scienta.2014.11.025
[33]

Tanase K, Onozaki T, Satoh S, Shibata M, Ichimura K. 2008. Differential expression levels of ethylene biosynthetic pathway genes during senescence of long-lived carnation cultivars. Postharvest Biology and Technology 47:210−17

doi: 10.1016/j.postharvbio.2007.06.023
[34]

Ji X, Mao Y, Yuan Y, Wang M, Zhao Y, et al. 2024. PhERF71 regulates petunia flower senescence by modulating ethylene biosynthesis. Postharvest Biology and Technology 216:113070

doi: 10.1016/j.postharvbio.2024.113070
[35]

Yin J, Chang X, Kasuga T, Bui M, Reid MS, et al. 2015. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in petunia. Horticulture Research 2:15059

doi: 10.1038/hortres.2015.59
[36]

Chang X, Donnelly L, Sun D, Rao J, Reid MS, et al. 2014. A petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS One 9:e88320

doi: 10.1371/journal.pone.0088320
[37]

Ji X, Wang M, Xu Z, Wang K, Sun D, et al. 2022. PlMYB308 Regulates flower senescence by modulating ethylene biosynthesis in herbaceous peony. Frontiers in Plant Science 13:872442

doi: 10.3389/fpls.2022.872442
[38]

Chen J, Zhang Q, Wang Q, Feng M, Li Y, et al. 2017. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia. BMC Plant Biology 17:51

doi: 10.1186/s12870-017-0999-1
[39]

Wang Y, Zhao H, Liu C, Cui G, Qu L, et al. 2020. Integrating physiological and metabolites analysis to identify ethylene involvement in petal senescence in Tulipa gesneriana. Plant Physiology and Biochemistry 149:121−31

doi: 10.1016/j.plaphy.2020.02.001
[40]

Yan X, Zhao J, Deng M, Wen J. 2024. Two key enzyme genes associated with ethylene bio-synthesis, LbACS and LbACO, are involved in the regulation of lily flower senescence. Scientia Horticulturae 330:113045

doi: 10.1016/j.scienta.2024.113045
[41]

Liao WB, Zhang ML, Yu JH. 2013. Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Scientia Horticulturae 155:30−38

doi: 10.1016/j.scienta.2013.03.005
[42]

Dek MSP, Padmanabhan P, Sherif S, Subramanian J, Paliyath AG. 2017. Upregulation of phosphatidylinositol 3-kinase (PI3K) enhances ethylene biosynthesis and accelerates flower senescence in transgenic Nicotiana tabacum L. International Journal of Molecular Sciences 18:1533

doi: 10.3390/ijms18071533
[43]

Liu J, Li J, Wang H, Fu Z, Liu J, et al. 2011. Identification and expression analysis of ERF transcription factor genes in petunia during flower senescence and in response to hormone treatments. Journal of Experimental Botany 62:825−40

doi: 10.1093/jxb/erq324
[44]

Li F, Gao Y, Jin C, Wen X, Geng H, et al. 2022. The chromosome-level genome of Gypsophila paniculata reveals the molecular mechanism of floral development and ethylene insensitivity. Horticulture Research 9:uhac176

doi: 10.1093/hr/uhac176
[45]

Zhu C, Huang Z, Sun Z, Feng S, Wang S, et al. 2023. The mutual regulation between DcEBF1/2 and DcEIL3-1 is involved in ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The Plant Journal 114:636−50

doi: 10.1111/tpj.16158
[46]

Lu J, Zhang G, Ma C, Li Y, Jiang C, et al. 2024. The F-box protein RhSAF destabilizes the gibberellic acid receptor RhGID1 to mediate ethylene-induced petal senescence in rose. The Plant Cell 36:1736−54

doi: 10.1093/plcell/koae035
[47]

Chen C, Ma Y, Zuo L, Xiao Y, Jiang Y, et al. 2023. The CALCINEURIN B-LIKE 4/CBL-INTERACTING PROTEIN 3 module degrades repressor JAZ5 during rose petal senescence. Plant Physiology 193:1605−20

doi: 10.1093/plphys/kiad365
[48]

Wu Y, Zuo L, Ma Y, Jiang Y, Gao J, et al. 2022. Protein kinase RhCIPK6 promotes petal senescence in response to ethylene in rose (Rosa hybrida). Genes 13:1989

doi: 10.3390/genes13111989
[49]

In BC, Strable J, Binder BM, Falbel TG, Patterson SE. 2013. Morphological and molecular characterization of ethylene binding inhibition in carnations. Postharvest Biology and Technology 86:272−79

doi: 10.1016/j.postharvbio.2013.07.007
[50]

Hoppen C, Müller L, Albrecht AC, Groth G. 2019. The NOP-1 peptide derived from the central regulator of ethylene signaling EIN2 delays floral senescence in cut flowers. Scientific Reports 9:1287

doi: 10.1038/s41598-018-37571-x
[51]

Yolcu S, Li X, Li S, Kim YJ. 2018. Beyond the genetic code in leaf senescence. Journal of Experimental Botany 69:801−10

doi: 10.1093/jxb/erx401
[52]

Yang CP, Xia ZQ, Hu J, Zhuang YF, Pan YW, et al. 2019. Transcriptome analysis of Oncidium petals provides new insights into the initiation of petal senescence. The Journal of Horticultural Science and Biotechnology 94:12−23

doi: 10.1080/14620316.2018.1432297
[53]

Feng S, Jiang X, Wang R, Tan H, Zhong L, et al. 2023. Histone H3K4 methyltransferase DcATX1 promotes ethylene induced petal senescence in carnation. Plant Physiology 192:546−64

doi: 10.1093/plphys/kiad008
[54]

Feng S, Jiang X, Huang Z, Li F, Wang R, et al. 2024. DNA methylation remodeled amino acids biosynthesis regulates flower senescence in carnation (Dianthus caryophyllus). New Phytologist 241:1605−20

doi: 10.1111/nph.19499
[55]

Thompson JE, Mayak S, Shinitzky M, Halevy AH. 1982. Acceleration of membrane senescence in cut carnation flowers by treatment with ethylene. Plant Physiology 69:859−63

doi: 10.1104/pp.69.4.859
[56]

Borochov A, Faragher J. 1983. Comparison between ultraviolet irradiation and ethylene effects on senescence parameters in carnation flowers. Plant Physiology 71:536−40

doi: 10.1104/pp.71.3.536
[57]

Wang T, Sun Z, Wang S, Feng S, Wang R, et al. 2023. DcWRKY33 promotes petal senescence in carnation (Dianthus caryophyllus L.) by activating genes involved in the biosynthesis of ethylene and abscisic acid and accumulation of reactive oxygen species. The Plant Journal 113:698−715

doi: 10.1111/tpj.16075
[58]

Xu H, Luo D, Zhang F. 2021. DcWRKY75 promotes ethylene induced petal senescence in carnation (Dianthus caryophyllus L.). The Plant Journal 108:1473−92

doi: 10.1111/tpj.15523
[59]

Xu H, Wang S, Larkin RM, Zhang F. 2022. The transcription factors DcHB30 and DcWRKY75 antagonistically regulate ethylene-induced petal senescence in carnation (Dianthus caryophyllus). Journal of Experimental Botany 73:7326−43

doi: 10.1093/jxb/erac357
[60]

Wang S, Xu H, Zhang F. 2024. DcEIL3-1, DcWRKY75 and DcHB30 transcription factors form an activation-inhibition module to regulate petal senescence in carnation (Dianthus caryophyllus L.). Postharvest Biology and Technology 210:112743

doi: 10.1016/j.postharvbio.2023.112743
[61]

Jing W, Zhao Q, Zhang S, Zeng D, Xu J, et al. 2021. RhWRKY33 positively regulates onset of floral senescence by responding to wounding- and ethylene-signaling in rose plants. Frontiers in Plant Science 12:726797

doi: 10.3389/fpls.2021.726797
[62]

Sun Z, Wu M, Wang S, Feng S, Wang Y, et al. 2023. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.). Plant Biotechnology Journal 21:2307−21

doi: 10.1111/pbi.14132
[63]

Shibuya K, Shimizu K, Niki T, Ichimura K. 2014. Identification of a NAC transcription factor, EPHEMERAL1, that controls petal senescence in Japanese morning glory. The Plant Journal 79:1044−51

doi: 10.1111/tpj.12605
[64]

Luo J, Chen S, Cao S, Zhang T, Li R, et al. 2021. Rose (Rosa hybrida) ethylene responsive factor 3 promotes rose flower senescence via direct activation of the abscisic acid synthesis–related 9-CIS-EPOXYCAROTENOID DIOXYGENASE gene. Plant and Cell Physiology 62:1030−43

doi: 10.1093/pcp/pcab085
[65]

Tan H, Liu X, Ma N, Xue J, Lu W, et al. 2006. Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biology and Technology 40:97−105

doi: 10.1016/j.postharvbio.2006.01.007
[66]

Taverner E, Letham DS, Wang J, Cornish E, Willcocks DA. 1999. Influence of ethylene on cytokinin metabolism in relation to Petunia corolla senescence. Phytochemistry 51:341−47

doi: 10.1016/S0031-9422(98)00757-2
[67]

Wu L, Ma N, Jia Y, Zhang Y, Feng M, et al. 2017. An ethylene-induced regulatory module delays flower senescence by regulating cytokinin content. Plant Physiology 173:853−62

doi: 10.1104/pp.16.01064
[68]

Zhang S, Zhao Q, Zeng D, Xu J, Zhou H, et al. 2019. Author Correction: RhMYB108, an R2R3-MYB transcription factor, is involved in ethylene- and JA-induced petal senescence in rose plants. Horticulture Research 6:139

doi: 10.1038/s41438-019-0230-7
[69]

Kondo M, Nakajima T, Shibuya K, Ichimura K. 2020. Comparison of petal senescence between cut and intact carnation flowers using potted plants. Scientia Horticulturae 272:109564

doi: 10.1016/j.scienta.2020.109564
[70]

Lee MM, Lee SH, Park KY. 1997. Effects of spermine on ethylene biosynthesis in cut carnation (Dianthus caryophyllus L.) flowers during senescence. Journal of Plant Physiology 151:68−73

doi: 10.1016/S0176-1617(97)80038-7
[71]

Pun UK, Yamada T, Tanase K, Shimizu-Yumoto H, Satoh S, et al. 2014. Effect of ethanol on ethylene biosynthesis and sensitivity in cut carnation flowers. Postharvest Biology and Technology 98:30−33

doi: 10.1016/j.postharvbio.2014.06.018
[72]

Pun UK, Yamada T, Azuma M, Tanase K, Yoshioka S, et al. 2016. Effect of sucrose on sensitivity to ethylene and enzyme activities and gene expression involved in ethylene biosynthesis in cut carnations. Postharvest Biology and Technology 121:151−58

doi: 10.1016/j.postharvbio.2016.08.001
[73]

Hoeberichts FA, van Doorn WG, Vorst O, Hall RD, van Wordragen MF. 2007. Sucrose prevents up-regulation of senescence-associated genes in carnation petals. Journal of Experimental Botany 58:2873−85

doi: 10.1093/jxb/erm076
[74]

Naing AH, Soe MT, Kyu SY, Kim CK. 2021. Nano-silver controls transcriptional regulation of ethylene- and senescence-associated genes during senescence in cut carnations. Scientia Horticulturae 287:110280

doi: 10.1016/j.scienta.2021.110280
[75]

Ma N, Tan H, Liu X, Xue J, Li Y, et al. 2006. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose (Rosa hybrida) cv. Samantha. Journal of Experimental Botany 57:2763−73

doi: 10.1093/jxb/erl033
[76]

Azuma M, Onozaki T, Ichimura K. 2020. Difference of ethylene production and response to ethylene in cut flowers of dahlia (Dahlia variabilis) cultivars. Scientia Horticulturae 273:109635

doi: 10.1016/j.scienta.2020.109635
[77]

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: emergence of a core signaling network. Annual Review of Plant Biology 61:651−79

doi: 10.1146/annurev-arplant-042809-112122
[78]

Finkelstein RR, Gampala SSL, Rock CD. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell 14:S15−S45

doi: 10.1105/tpc.010441
[79]

Waadt R, Seller CA, Hsu PK, Takahashi Y, Munemasa S, et al. 2022. Plant hormone regulation of abiotic stress responses. Nature Reviews Molecular Cell Biology 23:680−94

doi: 10.1038/s41580-022-00479-6
[80]

Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19

doi: 10.1038/s41576-021-00413-0
[81]

Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56:165−85

doi: 10.1146/annurev.arplant.56.032604.144046
[82]

Lone ML, Farooq S, ul Haq A, Parveen S, Altaf F, et al. 2024. Antagonistic interrelation between abscisic acid and gibberellic acid in the regulation of senescence in ray florets of Calendula officinalis L. Journal of Plant Growth Regulation 43:3671−84

doi: 10.1007/s00344-024-11342-7
[83]

Meng L, Yang H, La Y, Wu Y, Ye T, et al. 2024. Transcriptional modules and hormonal metabolic pathways reveal the critical role of TgHB12-like in the regulation of flower opening and petal senescence in Tulipa gesneriana. Horticulture Advances 2:18

doi: 10.1007/s44281-024-00031-w
[84]

Meng L, Yang H, Yang J, Wang Y, Ye T, et al. 2024. Tulip transcription factor TgWRKY75 activates salicylic acid and abscisic acid biosynthesis to synergistically promote petal senescence. Journal of Experimental Botany 75:2435−50

doi: 10.1093/jxb/erae021
[85]

Aalifar M, Aliniaeifard S, Arab M, Mehrjerdi MZ, Serek M. 2020. Blue light postpones senescence of carnation flowers through regulation of ethylene and abscisic acid pathway-related genes. Plant Physiology and Biochemistry 151:103−12

doi: 10.1016/j.plaphy.2020.03.018
[86]

Ji X, Xu Z, Wang M, Zhong X, et al. 2021. A MYB transcription factor, PlMYB308, plays an essential role in flower senescence of herbaceous peony. bioRxiv Preprint

doi: 10.1101/2021.09.02.458764
[87]

Ji X, Yuan Y, Bai Z, Wang M, Niu L, et al. 2023. PlZFP mediates the combinatorial interactions of abscisic acid with gibberellin and ethylene during flower senescence in cut herbaceous peony. Postharvest Biology and Technology 195:112130

doi: 10.1016/j.postharvbio.2022.112130
[88]

Arrom L, Munné-Bosch S. 2012. Hormonal regulation of leaf senescence in Lilium. Journal of Plant Physiology 169:1542−50

doi: 10.1016/j.jplph.2012.06.012
[89]

Deng Y, Wang C, Huo J, Hu W, Liao W. 2019. The involvement of NO in ABA-delayed the senescence of cut roses by maintaining water content and antioxidant enzymes activity. Scientia Horticulturae 247:35−41

doi: 10.1016/j.scienta.2018.12.006
[90]

Liu J, Fan Y, Zou J, Fang Y, Wang L, et al. 2017. A RhABF2/Ferritin module affects rose (Rosa hybrida) petal dehydration tolerance and senescence by modulating iron levels. The Plant Journal 92:1157−69

doi: 10.1111/tpj.13751
[91]

Ronen M, Mayak S. 1981. Interrelationship between abscisic acid and ethylene in the control of senescence processes in carnation flowers. Journal of Experimental Botany 32:759−65

doi: 10.1093/jxb/32.4.759
[92]

Cheng WH, Chiang MH, Hwang SG, Lin PC. 2009. Antagonism between abscisic acid and ethylene in Arabidopsis acts in parallel with the reciprocal regulation of their metabolism and signaling pathways. Plant Molecular Biology 71:61−80

doi: 10.1007/s11103-009-9509-7
[93]

Kumar M, Singh VP, Arora A, Singh N. 2014. The role of abscisic acid (ABA) in ethylene insensitive Gladiolus (Gladiolus grandiflora Hort.) flower senescence. Acta Physiologiae Plantarum 36:151−59

doi: 10.1007/s11738-013-1395-6
[94]

Hunter DA, Ferrante A, Vernieri P, Reid MS. 2004. Role of abscisic acid in perianth senescence of daffodil (Narcissus pseudonarcissus "Dutch Master"). Physiologia Plantarum 121:313−21

doi: 10.1111/j.0031-9317.2004.0311.x
[95]

Borochov A, Mayak S, Halevy AH. 1976. Combined effects of abscisic acid and sucrose on growth and senescence of rose flowers. Physiologia Plantarum 36:221−24

doi: 10.1111/j.1399-3054.1976.tb04416.x
[96]

Shimizu-Yumoto H, Ichimura K. 2009. Abscisic acid, in combination with sucrose, is effective as a pulse treatment to suppress leaf damage and extend foliage vase-life in cut Eustoma flowers. The Journal of Horticultural Science and Biotechnology 84:107−11

doi: 10.1080/14620316.2009.11512489
[97]

Ji X, Xin Z, Yuan Y, Wang M, Lu X, et al. 2023. A petunia transcription factor, PhOBF1, regulates flower senescence by modulating gibberellin biosynthesis. Horticulture Research 10:uhad022

doi: 10.1093/hr/uhad022
[98]

Lü P, Zhang C, Liu J, Liu X, Jiang G, et al. 2014. RhHB1 mediates the antagonism of gibberellins to ABA and ethylene during rose (Rosa hybrida) petal senescence. The Plant Journal 78:578−90

doi: 10.1111/tpj.12494
[99]

Yuan Y, Zhou N, Bai S, Zeng F, Liu C, et al. 2024. Evolutionary and integrative analysis of the gibberellin 20-oxidase, 3-oxidase, and 2-oxidase gene family in Paeonia ostii: insight into their roles in flower senescence. Agronomy 14:590

doi: 10.3390/agronomy14030590
[100]

Faraji S, Naderi R, Ibadli OV, Basaki T, Gasimov SN, et al. 2011. Effects of post harvesting on biochemical changes in Gladiolus cut flowers cultivars (White prosperity). Middle-East Journal of Scientific Research 9:572−77

[101]

Hönig M, Plíhalová L, Husičková A, Nisler J, Doležal K. 2018. Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences 19:4045

doi: 10.3390/ijms19124045
[102]

Trivellini A, Cocetta G, Vernieri P, Mensuali-Sodi A, Ferrante A. 2015. Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach. Plant Molecular Biology 87:169−80

doi: 10.1007/s11103-014-0268-8
[103]

Eisinger W. 1977. Role of cytokinins in carnation flower senescence. Plant Physiology 59:707−9

doi: 10.1104/pp.59.4.707
[104]

Khaskheli AJ, Ahmed W, Ma C, Zhang S, Liu Y, et al. 2018. RhERF113 functions in ethylene-induced petal senescence by modulating cytokinin content in rose. Plant and Cell Physiology 59:2442−51

doi: 10.1093/pcp/pcy162
[105]

Jiang C, Liang Y, Deng S, Liu Y, Zhao H, et al. 2023. The RhLOL1–RhILR3 module mediates cytokinin-induced petal abscission in rose. New Phytologist 237:483−96

doi: 10.1111/nph.18556
[106]

Zou J, Lü P, Jiang L, Liu K, Zhang T, et al. 2021. Regulation of rose petal dehydration tolerance and senescence by RhNAP transcription factor via the modulation of cytokinin catabolism. Molecular Horticulture 1:13

doi: 10.1186/s43897-021-00016-7
[107]

Mayak S, Halevy AH. 1970. Cytokinin activity in rose petals and its relation to senescence. Plant Physiology 46:497−99

doi: 10.1104/pp.46.4.497
[108]

Cubría-Radío M, Arrom L, Puig S, Munné-Bosch S. 2017. Hormonal sensitivity decreases during the progression of flower senescence in Lilium longiflorum. Journal of Plant Growth Regulation 36:402−12

doi: 10.1007/s00344-016-9648-4
[109]

Liang Y, Jiang C, Liu Y, Gao Y, Lu J, et al. 2020. Auxin regulates sucrose transport to repress petal abscission in rose (Rosa hybrida). The Plant Cell 32:3485−99

doi: 10.1105/tpc.19.00695
[110]

Kwon HS, Leporini C, Kim S, Heo S. 2024. Prolonged vase life by salicylic acid treatment and prediction of vase life using petal color senescence of cut lisianthus. Postharvest Biology and Technology 209:112726

doi: 10.1016/j.postharvbio.2023.112726
[111]

Meng L, Yang H, Xiang L, Wang Y, Chan Z. 2022. NAC transcription factor TgNAP promotes tulip petal senescence. Plant Physiology 190:1960−77

doi: 10.1093/plphys/kiac351
[112]

In BC, Ha STT, Lee YS, Lim JH. 2017. Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biology and Technology 131:74−83

doi: 10.1016/j.postharvbio.2017.05.003
[113]

MöLler R, Lind-Iversen S, Stumman BM, Serek M. 2000. Expression of genes for ethylene biosynthetic enzymes and anethylene receptor in senescing flowers of miniature potted roses. The Journal of Horticultural Science and Biotechnology 75:12−18

doi: 10.1080/14620316.2000.11511193
[114]

Jensen L, Hegelund JN, Olsen A, Lütken H, Müller R. 2016. A natural frameshift mutation in Campanula EIL2 correlates with ethylene insensitivity in flowers. BMC Plant Biology 16:117

doi: 10.1186/s12870-016-0786-4