[1]

Takamiya T, Wongsawad P, Sathapattayanon A, Tajima N, Suzuki S, et al. 2014. Molecular phylogenetics and character evolution of morphologically diverse groups, Dendrobium section Dendrobium and allies. AoB Plants 6:plu045

doi: 10.1093/aobpla/plu045
[2]

Teixeira da Silva JA, Ng TB. 2017. The medicinal and pharmaceutical importance of Dendrobium species. Applied Microbiology and Biotechnology 101:2227−39

doi: 10.1007/s00253-017-8169-9
[3]

Ng TB, Liu J, Wong JH, Ye X, Sze SCW, Yao T, et al. 2012. Review of research on Dendrobium, a prized folk medicine. Applied Microbiology and Biotechnology 93:1795−803

doi: 10.1007/s00253-011-3829-7
[4]

Meng LZ, Lv GP, Hu DJ, Cheong KL, Xie J, et al. 2013. Effects of polysaccharides from different species of Dendrobium (Shihu) on macrophage function. Molecules 18:5779−91

doi: 10.3390/molecules18055779
[5]

Ye G, Li J, Zhang J, Liu H, Ye Q, et al. 2021. Structural characterization and antitumor activity of a polysaccharide from Dendrobium wardianum. Carbohydrate Polymers 269:118253

doi: 10.1016/j.carbpol.2021.118253
[6]

Lam Y, Ng TB, Yao RM, Shi J, Xu K, et al. 2015. Evaluation of chemical constituents and important mechanism of pharmacological biology in Dendrobium Plants. Evidence-Based Complementary and Alternative Medicine 2015:841752

doi: 10.1155/2015/841752
[7]

Chen H, Li X, Xu Y, Lo K, Zheng H, et al. 2018. Study on the polar extracts of Dendrobium nobile, D. officinale, D. loddigesii, and Flickingeria fimbriata: metabolite identification, content evaluation, and bioactivity assay. Molecules 23:1185

doi: 10.3390/molecules23051185
[8]

Duan H, Er-bu A, Dongzhi Z, Xie H, Ye B, et al. 2022. Alkaloids from Dendrobium and their biosynthetic pathway, biological activity and total synthesis. Phytomedicine 102:154132

doi: 10.1016/j.phymed.2022.154132
[9]

Zhang T, Yang X, Wang F, Liu P, Xie M, et al. 2023. Comparison of the metabolomics of different Dendrobium species by UPLC-QTOF-MS. International Journal of Molecular Sciences 24:17148

doi: 10.3390/ijms242417148
[10]

Han B, Jing Y, Dai J, Zheng T, Gu F, et al. 2020. A chromosome-level genome assembly of Dendrobium Huoshanense using long reads and Hi-C data. Genome Biology and Evolution 12:2486−90

doi: 10.1093/gbe/evaa215
[11]

Yang X, Liu D, Tschaplinski TJ, Tuskan GA. 2019. Comparative genomics can provide new insights into the evolutionary mechanisms and gene function in CAM plants. Journal of Experimental Botany 70:6539−47

doi: 10.1093/jxb/erz408
[12]

Alföldi J, Lindblad-Toh K. 2013. Comparative genomics as a tool to understand evolution and disease. Genome Research 23:1063−68

doi: 10.1101/gr.157503.113
[13]

Xiang KL, Wu SD, Lian L, He WC, Peng D, et al. 2024. Genomic data and ecological niche modeling reveal an unusually slow rate of molecular evolution in the Cretaceous Eupteleaceae. Science China Life Sciences 67:803−16

doi: 10.1007/s11427-023-2448-x
[14]

Gill SS, Chahar P, Macovei A, Yadav S, Ansari AA, et al. 2021. Comparative genomic analysis reveals evolutionary and structural attributes of MCM gene family in Arabidopsis thaliana and Oryza sativa. Journal of Biotechnology 327:117−32

doi: 10.1016/j.jbiotec.2020.12.010
[15]

Braun DM. 2012. SWEET! The pathway is complete. Science 335(6065):173−74

doi: 10.1126/science.1216828
[16]

Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4:272

doi: 10.3389/fpls.2013.00272
[17]

Chen LQ, Lin IW, Qu XQ, Sosso D, McFarlane HE, et al. 2015. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis Embryo. The Plant Cell 27:607−19

doi: 10.1105/tpc.114.134585
[18]

Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, et al. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology 23:697−702

doi: 10.1016/j.cub.2013.03.021
[19]

Wen S, Neuhaus HE, Cheng J, Bie Z. 2022. Contributions of sugar transporters to crop yield and fruit quality. Journal of Experimental Botany 73:2275−89

doi: 10.1093/jxb/erac043
[20]

Ji J, Yang L, Fang Z, Zhang Y, Zhuang M, et al. 2022. Plant SWEET family of sugar transporters: structure, evolution and biological functions. Biomolecules 12:205

doi: 10.3390/biom12020205
[21]

Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, et al. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:259−63

doi: 10.1038/nature15391
[22]

Breia R, Conde A, Badim H, Fortes AM, Gerós H, et al. 2021. Plant SWEETs: from sugar transport to plant–pathogen interaction and more unexpected physiological roles. Plant Physiology 186:836−52

doi: 10.1093/plphys/kiab127
[23]

Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, et al. 2022. Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells 11:1303

doi: 10.3390/cells11081303
[24]

Hou B, Luo J, Zhang Y, Niu Z, Xue Q, et al. 2017. Iteration expansion and regional evolution: phylogeography of Dendrobium officinale and four related taxa in Southern China. Scientific Reports 7:43525

doi: 10.1038/srep43525
[25]

Sielemann K, Pucker B, Schmidt N, Viehöver P, Weisshaar B, et al. 2022. Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives. BMC Genomics 23:113

doi: 10.1186/s12864-022-08336-8
[26]

Huo J, Zhong S, Du X, Cao Y, Wang W, et al. 2020. Whole-genome sequence of Phellinus gilvus (mulberry Sanghuang) reveals its unique medicinal values. Journal of Advanced Research 24:325−35

doi: 10.1016/j.jare.2020.04.011
[27]

Cao Y, Feng X, Ding B, Huo H, Abdullah M, et al. 2025. Gap-free genome assemblies of two Pyrus bretschneideri cultivars and GWAS analyses identify a CCCH zinc finger protein as a key regulator of stone cell formation in pear fruit. Plant Communications 6:101238

doi: 10.1016/j.xplc.2024.101238
[28]

Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, et al. 2012. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207−11

doi: 10.1126/science.1213351
[29]

Li D, Ye G, Li J, Lai Z, Ruan S, et al. 2023. High light triggers flavonoid and polysaccharide synthesis through DoHY5-dependent signaling in Dendrobium officinale. The Plant Journal 115:1114−33

doi: 10.1111/tpj.16284
[30]

Zhu L, Lan J, Zhao T, Li M, Ruan YL. 2025. How vacuolar sugar transporters evolve and control cellular sugar homeostasis, organ development and crop yield. Nature Plants 11:1102−15

doi: 10.1038/s41477-025-02009-6
[31]

Chen L, Xu S, Liu Y, Zu Y, Zhang F, et al. 2022. Identification of key gene networks controlling polysaccharide accumulation in different tissues of Polygonatum cyrtonema Hua by integrating metabolic phenotypes and gene expression profiles. Frontiers in Plant Science 13:1012231

doi: 10.3389/fpls.2022.1012231
[32]

Zhang Y, Zhang GQ, Zhang D, Liu XD, Xu XY, et al. 2021. Chromosome-scale assembly of the Dendrobium chrysotoxum genome enhances the understanding of orchid evolution. Horticulture Research 8:183

doi: 10.1038/s41438-021-00621-z
[33]

Zhang S, Wang H, Wang T, Zhang J, Liu W, et al. 2023. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation. Plant Physiology 192:2081−101

doi: 10.1093/plphys/kiad119
[34]

Yoo SR, Jeong SJ, Lee NR, Shin HK, Seo CS. 2017. Simultaneous determination and anti-inflammatory effects of four phenolic compounds in Dendrobii Herba. Natural Product Research 31:2923−26

doi: 10.1080/14786419.2017.1300798
[35]

Cao YY, Li K, Li Y, Tian XT, Ba HX, et al. 2020. Dendrobium candidum aqueous extract attenuates isoproterenol-induced cardiac hypertrophy through the ERK signalling pathway. Pharmaceutical Biology 58:176−83

doi: 10.1080/13880209.2020.1723648
[36]

Zhu J, Zhou L, Li T, Ruan Y, Zhang A, et al. 2022. Genome-wide investigation and characterization of SWEET gene family with focus on their evolution and expression during hormone and abiotic stress response in maize. Genes 13:1682

doi: 10.3390/genes13101682
[37]

Feng G, Wu J, Xu Y, Lu L, Yi H. 2021. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. Plant Biotechnology Journal 19:1337−53

doi: 10.1111/pbi.13549
[38]

Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, et al. 2014. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology 164:777−89

doi: 10.1104/pp.113.232751
[39]

Yu Z, Yang Z, Teixeira da Silva JA, Luo J, Duan J. 2019. Influence of low temperature on physiology and bioactivity of postharvest Dendrobium officinale stems. Postharvest Biology and Technology 148:97−106

doi: 10.1016/j.postharvbio.2018.10.014
[40]

Cao L, Wang J, Wang L, Liu H, Wu W, et al. 2024. Genome-wide analysis of the SWEET gene family in Hemerocallis citrina and functional characterization of HcSWEET4a in response to salt stress. BMC Plant Biology 24:661

doi: 10.1186/s12870-024-05376-y
[41]

Fang T, Rao Y, Wang M, Li Y, Liu Y, et al. 2022. Characterization of the SWEET gene family in Longan (Dimocarpus longan) and the role of DlSWEET1 in cold tolerance. International Journal of Molecular Sciences 23:8914

doi: 10.3390/ijms23168914
[42]

Li P, Lin P, Zhao Z, Li Z, Liu Y, et al. 2022. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated sugarcane under drought stress. International Journal of Molecular Sciences 23:569

doi: 10.3390/ijms23010569
[43]

Abuslima E, Kanbar A, Ismail A, Raorane ML, Eiche E, et al. 2025. Salt stress-induced remodeling of sugar transport: a role for promoter alleles of SWEET13. Scientific Reports 15:7580

doi: 10.1038/s41598-025-90432-2
[44]

Colle M, Leisner CP, Wai CM, Ou S, Bird KA, et al. 2019. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. GigaScience 8:giz012

doi: 10.1093/gigascience/giz012
[45]

Ren R, Yue X, Li J, Xie S, Guo S, et al. 2020. Coexpression of sucrose synthase and the SWEET transporter, which are associated with sugar hydrolysis and transport, respectively, increases the hexose content in Vitis vinifera L. grape berries. Frontiers in Plant Science 11:321

doi: 10.3389/fpls.2020.00321