[1]

Riipinen I, Yli-Juuti T, Pierce JR, Petäjä T, Worsnop DR, et al. 2012. The contribution of organics to atmospheric nanoparticle growth. Nature Geoscience 5:453−58

doi: 10.1038/ngeo1499
[2]

Liao WM, Zhao PP, Cen BH, Jia AP, Lu JQ, et al. 2020. Co–Cr–O mixed oxides for low–temperature total oxidation of propane: Structural effects, kinetics, and spectroscopic investigation. Chinese Journal of Catalysis 41:442−53

doi: 10.1016/S1872-2067(19)63480-7
[3]

Yang X, Yu X, Jing M, Song W, Liu J, et al. 2019. Defective MnxZr1–xO2 solid solution for the catalytic oxidation of toluene: insights into the oxygen vacancy contribution. ACS Applied Materials & Interfaces 11:730−39

doi: 10.1021/acsami.8b17062
[4]

Yang AC, Streibel V, Choksi TS, Aljama H, Werghi B, et al. 2021. Insights and comparison of structure–property relationships in propane and propene catalytic combustion on Pd- and Pt-based catalysts. Journal of Catalysis 401:89−101

doi: 10.1016/j.jcat.2021.06.018
[5]

Zuo S, Sun X, Lv N, Qi C. 2014. Rare earth-modified Kaolin/NaY-supported Pd–Pt bimetallic catalyst for the catalytic combustion of benzene. ACS Applied Materials & Interfaces 6(15):11988−96

doi: 10.1021/am500138q
[6]

Kondratowicz T, Drozdek M, Michalik M, Gac W, Gajewska M, et al. 2020. Catalytic activity of Pt species variously dispersed on hollow ZrO2 spheres in combustion of volatile organic compounds. Applied Surface Science 513:145788

doi: 10.1016/j.apsusc.2020.145788
[7]

Chen X, Li J, Wang Y, Zhou Y, Zhu Q, et al. 2020. Preparation of nickel-foam-supported Pd/NiO monolithic catalyst and construction of novel electric heating reactor for catalytic combustion of VOCs. Applied Catalysis A: General 607:117839

doi: 10.1016/j.apcata.2020.117839
[8]

Zhao S, Hu F, Li J. 2016. Hierarchical core–shell Al2O3@Pd-CoAlO microspheres for low-temperature toluene combustion. ACS Catalysis 6(6):3433−41

doi: 10.1021/acscatal.6b00144
[9]

Xu J, Ouyang L, Mao W, Yang XJ, Xu XC, et al. 2012. operando and kinetic study of low-temperature, lean-burn methane combustion over a Pd/γ-Al2O3 catalyst. ACS Catalysis 2(2):261−69

doi: 10.1021/cs200694k
[10]

He FL, Jing MX, Meng XX, Shen XQ. 2013. Preparation and comparison of M/Ce-K-O (M=Co, Ni, Cu) nanocomposites on catalytic soot combustion. Advanced Materials Research 699:150−54

doi: 10.4028/www.scientific.net/amr.699.150
[11]

Cai T, Deng W, Xu P, Yuan J, Liu Z, et al. 2020. Great activity enhancement of Co3O4/γ-Al2O3 catalyst for propane combustion by structural modulation. Chemical Engineering Journal 395:125071

doi: 10.1016/j.cej.2020.125071
[12]

Zheng Y, Liu Y, Zhou H, Huang W, Pu Z. 2018. Complete combustion of methane over Co3O4 catalysts: Influence of pH values. Journal of Alloys and Compounds 734:112−20

doi: 10.1016/j.jallcom.2017.11.008
[13]

Li X, Li X, Zeng X, Zhu T. 2019. Correlation between the physicochemical properties and catalytic performances of micro/mesoporous CoCeOx mixed oxides for propane combustion. Applied Catalysis A: General 572:61−70

doi: 10.1016/j.apcata.2018.12.026
[14]

Xie X, Li Y, Liu ZQ, Haruta M, Shen W. 2009. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746−49

doi: 10.1038/nature07877
[15]

Gao C, Meng Q, Zhao K, Yin H, Wang D, et al. 2016. Co3O4 hexagonal platelets with controllable facets enabling highly efficient visible-light photocatalytic reduction of CO2. Advanced Materials 28:6485−90

doi: 10.1002/adma.201601387
[16]

Cheng Z, Chen Z, Li J, Zuo S, Yang P. 2018. Mesoporous silica-pillared clays supported nanosized Co3O4-CeO2 for catalytic combustion of toluene. Applied Surface Science 459:32−39

doi: 10.1016/j.apsusc.2018.07.203
[17]

Fan SB, Kouotou PM, Weng JJ, Pan GF, Tian ZY. 2017. Investigation on the structure stability and catalytic activity of Cu–Co binary oxides. Proceedings of the Combustion Institute 36:4375−82

doi: 10.1016/j.proci.2016.07.087
[18]

Ge B, Hu Y, Zhang H, Xu J, Zhang P, et al. 2021. Zirconium promoter effect on catalytic activity of Pd based catalysts for heterogeneous hydrogenation of nitrile butadiene rubber. Applied Surface Science 539:148212

doi: 10.1016/j.apsusc.2020.148212
[19]

Torralba R, Corro G, Rosales F, Bañuelos F, Pal U, et al. 2021. Total oxidation of methane over sulfur poisoning resistant Pt/ZrO2 catalyst: effect of Pt2+–Pt4+ and Pt2+–Zr4+ dipoles at metal-support interface. Catalysis Letters 151:1592−603

doi: 10.1007/s10562-020-03411-9
[20]

Qu Y, Li G, Zhao T, Zhang Z, Douthwaite M, et al. 2021. Low-temperature direct dehydrogenation of propane over binary oxide catalysts: insights into geometric effects and active sites. ACS Sustainable Chemistry & Engineering 9(38):12755−65

doi: 10.1021/acssuschemeng.1c03074
[21]

Wang YY, Liu YW, Kang X, Zhao XL, Wang L, et al. 2016. Dissociative photoionization of 1, 2-epoxyoctane studied with synchrotron radiation. Chinese Journal of Chemical Physics 29:533−38

doi: 10.1063/1674-0068/29/cjcp1603053
[22]

Tian Z, Li Y, Zhang T, Zhu A, Cui Z, et al. 2007. An experimental study of low-pressure premixed pyrrole/oxygen/Argon flames with tunable synchrotron photoionization. Combustion and Flame 151:347−65

doi: 10.1016/j.combustflame.2007.06.008
[23]

Li Y, Wang J, Chen X, Cheng Z, Xu M, et al. 2018. Catalytic pyrolysis of xylan over alkali metal salts as revealed by synchrotron vacuum ultraviolet photoionization mass spectrometry. Journal of Analytical and Applied Pyrolysis 135:94−100

doi: 10.1016/j.jaap.2018.09.014
[24]

Luo L, Tang X, Wang W, Wang Y, Sun S, et al. 2013. Methyl radicals in oxidative coupling of methane directly confirmed by synchrotron VUV photoionization mass spectroscopy. Scientific Reports 3:1625

doi: 10.1038/srep01625
[25]

Jiao F, Li J, Pan X, Xiao J, Li H, et al. 2016. Selective conversion of syngas to light olefins. Science 351:1065−68

doi: 10.1126/science.aaf1835[PubMed
[26]

Zou S, Li Z, Zhou Q, Pan Y, Yuan W, et al. 2021. Surface coupling of methyl radicals for efficient low-temperature oxidative coupling of methane. Chinese Journal of Catalysis 42:1117−25

doi: 10.1016/S1872-2067(20)63756-1
[27]

Zhang X, You R, Wei Z, Jiang X, Yang J, et al. 2020. Radical chemistry and reaction mechanisms of propane oxidative dehydrogenation over hexagonal boron nitride catalysts. Angewandte Chemie International Edition 59:8042−46

doi: 10.1002/anie.202002440
[28]

He C, Ao C, Ruan S, Xu K, Zhang L. 2022. Catalytic combustion of propane over Zr-modified Co3O4 catalysts: an experimental and theoretical study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 641:128617

doi: 10.1016/j.colsurfa.2022.128617
[29]

Bai J, Liu D, Zhang L, Zhang P. 2024. Theoretical study of the second- and third-H-abstraction reactions of monomethylhydrazine and nitrogen dioxide and its application to hypergolic ignition modeling. Combustion and Flame 268:113617

doi: 10.1016/j.combustflame.2024.113617
[30]

Cool TA, Wang J, Nakajima K, Taatjes CA, Mcllroy A. 2005. Photoionization cross sections for reaction intermediates in hydrocarbon combustion. International Journal of Mass Spectrometry 247:18−27

doi: 10.1016/j.ijms.2005.08.018
[31]

Cool TA, Nakajima K, Mostefaoui TA, Qi F, McIlroy A, et al. 2003. Selective detection of isomers with photoionization mass spectrometry for studies of hydrocarbon flame chemistry. The Journal of Chemical Physics 119:8356−65

doi: 10.1063/1.1611173
[32]

Yang B, Wang J, Cool TA, Hansen N, Skeen S, et al. 2012. Absolute photoionization cross-sections of some combustion intermediates. International Journal of Mass Spectrometry 309:118−28

doi: 10.1016/j.ijms.2011.09.006