[1]

Rawson AM, Dempster AW, Humphreys CM, Minton NP. 2023. Pathogenicity and virulence of Clostridium botulinum. Virulence 14:2205251

doi: 10.1080/21505594.2023.2205251
[2]

Zhu R, Xu HY, Song ZH. 2020. Review on revision of the standards system for pharmaceutical microbial control of the Chinese pharmacopoeia 2020 edition volume IV. Chinese Pharmaceutical Journal 55(19):1564−68

doi: 10.11669/cpj.2020.19.002
[3]

Munir MT, Mtimet N, Guillier L, Meurens F, Fravalo P, et al. 2023. Physical treatments to control Clostridium botulinum hazards in food. Foods 12:1580

doi: 10.3390/foods12081580
[4]

Lenz CA, Vogel RF. 2015. Differential effects of sporulation temperature on the high pressure resistance of Clostridium botulinum type E spores and the interconnection with sporulation medium cation contents. Food Microbiology 46:434−42

doi: 10.1016/j.fm.2014.09.005
[5]

Lenz CA, Vogel RF. 2014. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores. Food Microbiology 44:156−67

doi: 10.1016/j.fm.2014.05.010
[6]

Yang WW, Crow-Willard EN, Ponce A. 2009. Production and characterization of pure Clostridium spore suspensions. Journal of Applied Microbiology 106:27−33

doi: 10.1111/j.1365-2672.2008.03931.x
[7]

Isticato R, Lanzilli M, Petrillo C, Donadio G, Baccigalupi L, et al. 2020. Bacillus subtilis builds structurally and functionally different spores in response to the temperature of growth. Environmental Microbiology 22:170−82

doi: 10.1111/1462-2920.14835
[8]

Astorga-Oquendo L, Hu H, Yousef AE, Balasubramaniam VM. 2024. Inactivation of Clostridium sporogenes PA 3679 spores by synergistic pressure-assisted thermal processing and antimicrobial compound combinations. LWT 209:116785

doi: 10.1016/j.lwt.2024.116785
[9]

Dong QL. 2011. Modeling the thermal resistance of Clostridium sporogenes spores under different temperature, pH and NaCl concentrations. Journal of Food Process Engineering 34:1965−81

doi: 10.1111/j.1745-4530.2010.00595.x
[10]

Zuo C, Qin Y, Zhang Y, Pan L, Tu K, et al. 2024. Oil addition increases the heat resistance of Clostridium sporogenes spores in braised sauce beef: perspectives from spore surface characteristics and microstructure. International Journal of Food Microbiology 413:110608

doi: 10.1016/j.ijfoodmicro.2024.110608
[11]

Rolfe CA, Morrissey TR, Redan BW, Aguilar VL, Skinner GE, et al. 2024. Role of dipicolinic acid in heat resistance of spores of Clostridium botulinum and Clostridium sporogenes PA3679 by thermal and pressure-assisted thermal processing. Journal of Food Protection 87:100359

doi: 10.1016/j.jfp.2024.100359
[12]

Yamazaki K, Kawai Y, Inoue N, Shinano H. 1997. Influence of sporulation medium and divalent ions on the heat resistance of Alicyclobacillus acidoterrestris spores. Letters in Applied Microbiology 25:153−56

doi: 10.1046/j.1472-765X.1997.00194.x
[13]

Lee KY, Juang TC, Lee KC. 1978. Effect of metal ions on growth and sporulation of Clostridium perfringens in a synthetic medium. Chinese Journal of Microbiology 11:50−61

[14]

Sinnelä MT, Pawluk AM, Jin YH, Kim D, Mah JH. 2021. Effect of calcium and manganese supplementation on heat resistance of spores of Bacillus species associated with food poisoning, spoilage, and fermentation. Frontiers in Microbiology 12:744953

doi: 10.3389/fmicb.2021.744953
[15]

Palop A, Sala FJ, Condón S. 1999. Heat resistance of native and demineralized spores of Bacillus subtilis sporulated at different temperatures. Applied and Environmental Microbiology 65:1316−19

doi: 10.1128/AEM.65.3.1316-1319.1999
[16]

Shin SY, Calvisi EG, Beaman TC, Pankratz HS, Gerhardt P, et al. 1994. Microscopic and thermal characterization of hydrogen peroxide killing and lysis of spores and protection by transition metal ions, chelators, and antioxidants. Applied and Environmental Microbiology 60:3192−97

doi: 10.1128/aem.60.9.3192-3197.1994
[17]

Setlow P. 2019. Observations on research with spores of Bacillales and Clostridiales species. Journal of Applied Microbiology 126:348−58

doi: 10.1111/jam.14067
[18]

Juneja VK, Novak JS, Huang L, Eblen BS. 2003. Increased thermotolerance of Clostridium perfringens spores following sublethal heat shock. Food Control 14:163−68

doi: 10.1016/S0956-7135(02)00060-9
[19]

Tavares MB, Souza RD, Luiz WB, Cavalcante RCM, Casaroli C, et al. 2013. Bacillus subtilis endospores at high purity and recovery yields: optimization of growth conditions and purification method. Current Microbiology 66:279−85

doi: 10.1007/s00284-012-0269-2
[20]

Zhang Y, Li M, Zhao L, Zhu Y, Zhao G, et al. 2022. Effect of heat stress on the physicochemical properties of inner membrane proteins of Clostridium perfringens spores. Food Science 43(18):152−58

doi: 10.7506/spkx1002-6630-20210925-297
[21]

Liao C, Wen Y, Chai Z, Li W, Cao Y, et al. 2025. Growth dynamics of Clostridium perfringens superdormant spores in cooked ground pork under synergic treatment of heat and hydrostatic pressure. Food Research International 199:115375

doi: 10.1016/j.foodres.2024.115375
[22]

Jia Z, Zhou J, Han J, Liu D, Lv R. 2023. Proteomics-based analysis of the stress response of Bacillus cereus spores under ultrasound and electrolyzed water treatment. Ultrasonics Sonochemistry 98:106523

doi: 10.1016/j.ultsonch.2023.106523
[23]

Wang GQ. 2024. Discussion on the determination method of high content calcium fluoride fluorite. West-China Exploration Engineering 36(4):69−71

doi: 10.3969/j.issn.1004-5716.2024.04.020
[24]

Setlow P, Christie G. 2023. New thoughts on an old topic: secrets of bacterial spore resistance slowly being revealed. Microbiology and Molecular Biology Reviews 87:e0008022

doi: 10.1128/mmbr.00080-22
[25]

Cristiano-Fajardo SA, Barrón-Reyes D, Flores C, Luna-Bulbarela A, Soriano-Peña E, et al. 2024. Production of poly-gamma-glutamic acid and spore formation in Bacillus velezensis 83 are affected by acidic growing conditions and glucose uptake rate. Journal of Chemical Technology & Biotechnology 99:609−17

doi: 10.1002/jctb.7563
[26]

Zhang P, Thomas S, Li YQ, Setlow P. 2012. Effects of cortex peptidoglycan structure and cortex hydrolysis on the kinetics of Ca2+-dipicolinic acid release during Bacillus subtilis spore germination. Journal of Bacteriology 194:646−52

doi: 10.1128/JB.06452-11
[27]

Paidhungat M, Setlow B, Driks A, Setlow P. 2000. Characterization of spores of Bacillus subtilis which lack dipicolinic acid. Journal of Bacteriology 182:5505−12

doi: 10.1128/JB.182.19.5505-5512.2000
[28]

Janganan TK, Mullin N, Dafis-Sagarmendi A, Brunt J, Tzokov SB, et al. 2020. Architecture and self-assembly of Clostridium sporogenes and Clostridium botulinum spore surfaces illustrate a general protective strategy across spore formers. mSphere 5:e00424-20

doi: 10.1128/mSphere.00424-20
[29]

Malleck T, Fekraoui F, Bornard I, Henry C, Haudebourg E, et al. 2022. Insights into the structure and protein composition of Moorella thermoacetica spores formed at different temperatures. International Journal of Molecular Sciences 23:550

doi: 10.3390/ijms23010550
[30]

Baloh M, Sorg JA. 2021. Clostridioides difficile SpoVAD and SpoVAE interact and are required for dipicolinic acid uptake into spores. Journal of Bacteriology 203:e0039421

doi: 10.1128/JB.00394-21
[31]

Tian J, Wu Y, Li C, Zhou Y, Zhou Z, et al. 2020. Effect of CaCO3 on sporulation of Bacillus coagulans CGMCC 9951. Food Science 41(12):113−19

doi: 10.7506/spkx1002-6630-20190505-021
[32]

Wang S, Ng TB, Chen T, Lin D, Wu J, et al. 2005. First report of a novel plant lysozyme with both antifungal and antibacterial activities. Biochemical and Biophysical Research Communications 327:820−27

doi: 10.1016/j.bbrc.2004.12.077
[33]

Zhao RW, Tan LP, Liu TJ. 2021. Research progress of lysozyme and its application. Journal of Qilu University of Technology 35(1):12−18

[34]

Liu Y. 2022. Study on the combined effects of HPTS and lysozyme on the inactivation of Bacillus subtilis spores. Thesis. Ningxia University, China doi: 10.27257/d.cnki.gnxhc.2022.000490

[35]

Chen X, Zeng C, Shen J, Guo J, Zhang Z. 2019. Effect of medium temperature and ethanol on Bacillus subtilis cortex-lytic enzyme activity and structure. Food and Fermentation Industries 45(23):37−42

doi: 10.13995/j.cnki.11-1802/ts.022068
[36]

Wen J, Smelt JPPM, Vischer NOE, de Vos AL, Setlow P, et al. 2022. Heat activation and inactivation of bacterial spores: is there an overlap? Applied and Environmental Microbiology 88:e0232421

doi: 10.1128/aem.02324-21