[1]

Shi LP, Zhang GZ, Liu CS, Huang ZX, Zheng YQ, et al. 2023. Research summary of chemical constituents and pharmacological effects of Panax notoginseng and predictive analysis on its Q-markers. China Journal of Chinese Materia Medica [Zhongguo Zhong Yao Za Zhi] 48:2059−67

doi: 10.19540/j.cnki.cjcmm.20230213.201
[2]

Wang P, Yang L, Sun J, Yang Y, Qu Y, et al. 2021. Structure and function of rhizosphere soil and root endophytic microbial communities associated with root rot of Panax notoginseng. Frontiers in Plant Science 12:752683

doi: 10.3389/fpls.2021.752683
[3]

Feng Y, Shuai X, Chen J, Zhang Q, Jia L, et al. 2025. Unveiling the genomic features and biocontrol potential of Trichoderma hamatum against root rot pathogens. Journal of Fungi 11:126

doi: 10.3390/jof11020126
[4]

Lin C, Feng XL, Liu Y, Li ZC, Li XZ, et al. 2023. Bioinformatic analysis of secondary metabolite biosynthetic potential in pathogenic Fusarium. Journal of Fungi 9:850

doi: 10.3390/jof9080850
[5]

Liu XY, Huo YY, Yang J, Li TT, Xu FR, et al. 2022. Integrated physiological, metabolomic, and proteome analysis of Alpinia officinarum Hance essential oil inhibits the growth of Fusarium oxysporum of Panax notoginseng. Frontiers in Microbiology 13:1031474

doi: 10.3389/fmicb.2022.1031474
[6]

Mogazy AM, Abdallah WE, Mohamed HI, Omran AAA. 2024. The efficacy of chemical inducers and fungicides in controlling tomato root rot disease caused by Rhizoctonia solani. Plant Physiology and Biochemistry 210:108669

doi: 10.1016/j.plaphy.2024.108669
[7]

Huang Y, Wang Q, Zhang W, Zhu P, Xiao Q, et al. 2021. Stoichiometric imbalance of soil carbon and nutrients drives microbial community structure under long-term fertilization. Applied Soil Ecology 168:104119

doi: 10.1016/j.apsoil.2021.104119
[8]

Chen X, Hu LF, Huang XS, Zhao LX, Miao CP, et al. 2019. Isolation and characterization of new phenazine metabolites with antifungal activity against root-rot pathogens of Panax notoginseng from Streptomyces. Journal of Agricultural and Food Chemistry 67:11403−7

doi: 10.1021/acs.jafc.9b04191
[9]

Xiao Z, Zhao Q, Li W, Gao L, Liu G. 2023. Strain improvement of Trichoderma harzianum for enhanced biocontrol capacity: strategies and prospects. Frontiers in Microbiology 14:1146210

doi: 10.3389/fmicb.2023.1146210
[10]

Díaz-Díaz M, Antón-Domínguez BI, Raya MC, Bernal-Cabrera A, Medina-Marrero R, et al. 2024. Streptomyces spp. strains as potential biological control agents against Verticillium Wilt of olive. Journal of Fungi 10:138

doi: 10.3390/jof10020138
[11]

Zhang M, Ren Q, Wu X, Liu M, Zhang L, et al. 2025. Biocontrol potential of four Pseudomonas strains against tobacco black shank disease. Antonie Van Leeuwenhoek 118:83

doi: 10.1007/s10482-025-02092-x
[12]

Adeleke BS, Ayilara MS, Akinola SA, Babalola OO. 2022. Biocontrol mechanisms of endophytic fungi. Egyptian Journal of Biological Pest Control 32:46

doi: 10.1186/s41938-022-00547-1
[13]

Luo S, Tian C, Zhang H, Yao Z, Guan Z, et al. 2023. Isolation and identification of biocontrol bacteria against Atractylodes chinensis root rot and their effects. Microorganisms 11(10):2384

doi: 10.3390/microorganisms11102384
[14]

Qiao J, Zhang R, Liu Y, Liu Y. 2023. Evaluation of the biocontrol efficiency of Bacillus subtilis wettable powder on pepper root rot caused by Fusarium solani. Pathogens 12:225

doi: 10.3390/pathogens12020225
[15]

Mei P, Dou T, Song X, Li L. 2024. Control of coptis root rot by combination of Bacillus cereus isolate Y9 and other antagonistic microorganisms. Journal of Plant Pathology 106:1295−309

doi: 10.1007/s42161-024-01685-1
[16]

Ullah S, Bano A, Ullah A, Shahid MA, Khan N. 2022. A comparative study of plant growth promoting rhizobacteria (PGPR) and sowing methods on nutrient availability in wheat and rhizosphere soil under salinity stress. Rhizosphere 23:100571

doi: 10.1016/j.rhisph.2022.100571
[17]

Wang M, Yang X. 2024. Effects of plant growth-promoting rhizobacteria on blueberry growth and rhizosphere soil microenvironment. PeerJ 12:e16992

doi: 10.7717/peerj.16992
[18]

Shultana R, Zuan ATK, Naher UA, Islam AKMM, Rana MM, et al. 2022. The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agronomy 12(10):2266

doi: 10.3390/agronomy12102266
[19]

Zhang F, Liu C, Wang Y, Dou K, Chen F, et al. 2020. Biological characteristic and biocontrol mechanism of Trichoderma harzianum T-A66 against bitter gourd wilt caused by Fusarium oxysporum. Journal of Plant Pathology 102:1107−20

doi: 10.1007/s42161-020-00573-8
[20]

Kumari R, Kumar V, Arukha AP, Rabbee MF, Ameen F, et al. 2024. Screening of the biocontrol efficacy of potent Trichoderma strains against Fusarium oxysporum f.sp. ciceri and scelrotium rolfsii causing wilt and collar rot in chickpea. Microorganisms 12:1280

doi: 10.3390/microorganisms12071280
[21]

Zhou J, Liang J, Zhang X, Wang F, Qu Z, et al. 2025. Trichoderma brevicompactum 6311: prevention and control of Phytophthora capsici and its growth-promoting effect. Journal of Fungi 11:105

doi: 10.3390/jof11020105
[22]

Mironenka J, Różalska S, Soboń A, Bernat P. 2021. Trichoderma harzianum metabolites disturb Fusarium culmorum metabolism: metabolomic and proteomic studies. Microbiological Research 249:126770

doi: 10.1016/j.micres.2021.126770
[23]

Li Y, Liu Y, Zhang Z, Li J, Zhu S, et al. 2022. Application of plant survival-promoting and pathogen-suppressing Trichoderma species for crop biofertilization and biocontrol of root rot in Panax notoginseng. Journal of Plant Pathology 104:1361−69

doi: 10.1007/s42161-022-01166-3
[24]

Yusnawan E, Uge E, Inayati A, Baliadi Y. 2024. Biological control of damping-off and plant growth promotion in soybean using Trichoderma virens. IOP Conference Series: Earth and Environmental Science 1312:012038

doi: 10.1088/1755-1315/1312/1/012038
[25]

Bala IA, Șesan TE, Oancea A, Craciunescu O, Ghiurea M, et al. 2024. Influence of foliar treatment with suspensions rich in Trichoderma Chlamydospores on Momordica charantia physiology, yield, and quality. Horticulturae 10:371

doi: 10.3390/horticulturae10040371
[26]

Daranagama ND, Shioya K, Yuki M, Sato H, Ohtaki Y, et al. 2019. Proteolytic analysis of Trichoderma reesei in celluase-inducing condition reveals a role for trichodermapepsin (TrAsP) in cellulase production. Journal of Industrial Microbiology & Biotechnology 46:831−42

doi: 10.1007/s10295-019-02155-9
[27]

Kelley WD, Rodriguez-Kabana R. 1976. Competition between Phytophthora cinnamomi and Trichoderma spp. in autoclaved soil. Canadian Journal of Microbiology 22:1120−27

doi: 10.1139/m76-163
[28]

Mukherjee PK, Mendoza-Mendoza A, Zeilinger S, Horwitz BA. 2022. Mycoparasitism as a mechanism of Trichoderma-mediated suppression of plant diseases. Fungal Biology Reviews 39:15−33

doi: 10.1016/j.fbr.2021.11.004
[29]

Kaur M, Kaur L. 2022. Trichoderma as a bio-control agent - a review. International Journal of Current Microbiology and Applied Sciences 11:103−8

doi: 10.20546/ijcmas.2022.1106.012
[30]

Radhi MN. 2023. Contribute to know the enzymes that secreted by Trichoderma viride and its spores loaded by alginic acid on cucumber seeds. IOP Conference Series: Earth and Environmental Science 1259:012116

doi: 10.1088/1755-1315/1259/1/012116
[31]

Younesi H, Bazgir E, Darvishnia M, Chehri K. 2021. Selection and control efficiency of Trichoderma isolates against Fusarium oxysporum f. sp. ciceris in Iran. Physiological and Molecular Plant Pathology 116:101731

doi: 10.1016/j.pmpp.2021.101731
[32]

Ambata Ambata HT, Eyong MNA, Bedine MAB, Youassi Youassi YO, Jiogue MB, et al. 2025. Evaluating Trichoderma viride for enhancing oil palm growth and biochemical defense against fusarium wilt caused by Fusarium oxysporum f. sp. elaeidis. Folia Microbiologica

doi: 10.1007/s12223-025-01273-5
[33]

Chen D, Hou Q, Fan B, Zhang H, Jia L, et al. 2022. Biocontrol potential of endophytic Trichoderma citrinoviride HT-1 against root rot of Rheum palmatum through both antagonistic effects and induced systemic resistance. World Journal of Microbiology and Biotechnology 38:88

doi: 10.1007/s11274-022-03272-x
[34]

Yassin MT, Mostafa AA, Al-Askar AA, Sayed SRM, Rady AM. 2021. Antagonistic activity of Trichoderma harzianum and Trichoderma viride strains against some fusarial pathogens causing stalk rot disease of maize, in vitro. Journal of King Saud University - Science 33:101363

doi: 10.1016/j.jksus.2021.101363
[35]

Yao X, Guo H, Zhang K, Zhao M, Ruan J, et al. 2023. Trichoderma and its role in biological control of plant fungal and nematode disease. Frontiers in Microbiology 14:1160551

doi: 10.3389/fmicb.2023.1160551
[36]

Li T, Tao R, Zhong Z, Liu X, Gao Z. 2025. Combining Trichoderma sp. and biogenic AgNPs from Trichoderma strains as a synergistic control complex to improve the growth of muskmelon and suppress Fusarium oxysporum f. sp. melonis. Environmental Science: Nano 12:2034−49

doi: 10.1039/d4en00760c
[37]

Li H, Kuerban Z, Jiang R, He F, Hu X, et al. 2025. The isolation, identification, whole-genome sequencing of Trichoderma brevicompactum TB2 and its effects on plant growth-promotion. Plant and Soil

doi: 10.1007/s11104-025-07304-x
[38]

Yang Q, Mao Z, Hao Y, Zheng S, Zhao J, et al. 2024. Genome-wide transcriptome profiling reveals molecular response pathways of Trichoderma harzianum in response to salt stress. Frontiers in Microbiology 15:1342584

doi: 10.3389/fmicb.2024.1342584
[39]

Bansal R, Mukherjee PK. 2016. Identification of novel gene clusters for secondary metabolism in Trichoderma genomes. Microbiology 85:185−90

doi: 10.1134/S002626171602003X
[40]

Tamizi AA, Mat-Amin N, Weaver JA, Olumakaiye RT, Akbar MA, et al. 2022. Genome sequencing and analysis of Trichoderma (Hypocreaceae) isolates exhibiting antagonistic activity against the papaya dieback pathogen, Erwinia mallotivora. Journal of Fungi 8:246

doi: 10.3390/jof8030246
[41]

Rosolen RR, Horta MAC, de Azevedo PHC, da Silva CC, Sforca DA, et al. 2023. Whole-genome sequencing and comparative genomic analysis of potential biotechnological strains of Trichoderma harzianum, Trichoderma atroviride, and Trichoderma reesei. Molecular Genetics and Genomics 298:735−54

doi: 10.1007/s00438-023-02013-5
[42]

He T, Li X, Iacovelli R, Hackl T, Haslinger K. 2023. Genomic and metabolomic analysis of the endophytic fungus Fusarium sp. VM-40 isolated from the medicinal plant Vinca minor. Journal of Fungi 9:704

doi: 10.3390/jof9070704
[43]

Chen J, Feng Y, Ma J, Zhang Q, Dong Y, et al. 2025. Genomic and metabolomic insights into the antimicrobial compounds and plant growth-promoting potential of Bacillus velezensis B115. Scientific Reports 15:10666

doi: 10.1038/s41598-025-92322-z
[44]

Lewis MH, Carbone I, Luis JM, Payne GA, Bowen KL, et al. 2019. Biocontrol strains differentially shift the genetic structure of indigenous soil populations of Aspergillus flavus. Frontiers in Microbiology 10:1738

doi: 10.3389/fmicb.2019.01738
[45]

Wang M, Li H, Li J, Zhang W, Zhang J. 2024. Streptomyces strains and their metabolites for biocontrol of phytopathogens in agriculture. Journal of Agricultural and Food Chemistry 72(4):2077−88

doi: 10.1021/acs.jafc.3c08265
[46]

Zheng YK, Miao CP, Chen HH, Huang FF, Xia YM, et al. 2017. Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. Journal of Ginseng Research 41:353−60

doi: 10.1016/j.jgr.2016.07.005
[47]

Manzar N, Kashyap AS, Goutam RS, Rajawat MVS, Sharma PK, et al. 2022. Trichoderma: advent of versatile biocontrol agent, its secrets and insights into mechanism of biocontrol potential. Sustainability 14:12786

doi: 10.3390/su141912786
[48]

Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. 2022. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences 23:2329

doi: 10.3390/ijms23042329
[49]

Martinez Y, Ribera J, Schwarze FWMR, De France K. 2023. Biotechnological development of Trichoderma-based formulations for biological control. Applied Microbiology and Biotechnology 107:5595−612

doi: 10.1007/s00253-023-12687-x
[50]

Ji S, Liu B, Han J, Kong N, Yang Y, et al. 2024. Decrypting biocontrol functions and application modes by genomes data of three Trichoderma strains/species. Fungal Genetics and Biology 172:103889

doi: 10.1016/j.fgb.2024.103889
[51]

Zhang JL, Tang WL, Huang QR, Li YZ, Wei ML, et al. 2021. Trichoderma: a treasure house of structurally diverse secondary metabolites with medicinal importance. Frontiers in Microbiology 12:723828

doi: 10.3389/fmicb.2021.723828
[52]

Niu J, Yan X, Bai Y, Li W, Lu G, et al. 2024. Integration of transcriptomics and WGCNA to characterize Trichoderma harzianum-induced systemic resistance in Astragalus mongholicus for defense against Fusarium solani. Genes 15:1180

doi: 10.3390/genes15091180
[53]

Ma C, Liu J, Tang J, Sun Y, Jiang X, et al. 2023. Current genetic strategies to investigate gene functions in Trichoderma reesei. Microbial Cell Factories 22:97

doi: 10.1186/s12934-023-02104-3
[54]

Pachauri S, Chatterjee S, Kumar V, Mukherjee PK. 2019. A dedicated glyceraldehyde-3-phosphate dehydrogenase is involved in the biosynthesis of volatile sesquiterpenes in Trichoderma virens—evidence for the role of a fungal GAPDH in secondary metabolism. Current Genetics 65:243−52

doi: 10.1007/s00294-018-0868-y
[55]

Scott K, Konkel Z, Gluck-Thaler E, Valero David GE, Simmt CF, et al. 2023. Endophyte genomes support greater metabolic gene cluster diversity compared with non-endophytes in Trichoderma. PLoS One 18:e0289280

doi: 10.1371/journal.pone.0289280
[56]

Pang Z, Xu L, Viau C, Lu Y, Salavati R, et al. 2024. MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics. Nature Communications 15:3675

doi: 10.1038/s41467-024-48009-6
[57]

Vega-Celedón P, Castillo-Novales D, Bravo G, Cárdenas F, Romero-Silva MJ, et al. 2024. Synthesis and degradation of the phytohormone indole-3-acetic acid by the versatile bacterium Paraburkholderia xenovorans LB400 and its growth promotion of Nicotiana tabacum plant. Plants 13:3533

doi: 10.3390/plants13243533
[58]

Dong BC, Liu F, Hu GA, Yu WC, Li ZY, et al. 2025. Metabologenomics analysis reveals antibiotic crypticity of Kutzneria viridogrisea DSM 43850. Journal of Applied Microbiology 136:lxaf114

doi: 10.1093/jambio/lxaf114
[59]

Xie X, Zhao L, Song Y, Qiao Y, Wang ZX, et al. 2024. Genome-wide characterization and metabolite profiling of Cyathus olla: insights into the biosynthesis of medicinal compounds. BMC Genomics 25:618

doi: 10.1186/s12864-024-10528-3
[60]

Feng XL, Zhang RQ, Wang DC, Dong WG, Wang ZX, et al. 2023. Genomic and metabolite profiling reveal a novel Streptomyces strain, QHH-9511, from the Qinghai-Tibet Plateau. Microbiology Spectrum 11:e0276422

doi: 10.1128/spectrum.02764-22