[1]

Lacombe B, Achard P. 2016. Long-distance transport of phytohormones through the plant vascular system. Current Opinion in Plant Biology 34:1−8

doi: 10.1016/j.pbi.2016.06.007
[2]

Anfang M, Shani E. 2021. Transport mechanisms of plant hormones. Current Opinion in Plant Biology 63:102055

doi: 10.1016/j.pbi.2021.102055
[3]

Park J, Lee Y, Martinoia E, Geisler M. 2017. Plant hormone transporters: what we know and what we would like to know. BMC Biology 15:93

doi: 10.1186/s12915-017-0443-x
[4]

Zhang Y, Berman A, Shani E. 2023. Plant hormone transport and localization: signaling molecules on the move. Annual Review of Plant Biology 74:453−79

doi: 10.1146/annurev-arplant-070722-015329
[5]

Geisler M, Aryal B, di Donato M, Hao P. 2017. A critical view on ABC transporters and their interacting partners in auxin transport. Plant and Cell Physiology 58:1601−14

doi: 10.1093/pcp/pcx104
[6]

Binenbaum J, Weinstain R, Shani E. 2018. Gibberellin localization and transport in plants. Trends in Plant Science 23:410−21

doi: 10.1016/j.tplants.2018.02.005
[7]

Hu Y, Shani E. 2023. Cytokinin activity - transport and homeostasis at the whole plant, cell, and subcellular levels. New Phytologist 239:1603−8

doi: 10.1111/nph.19001
[8]

Zhao J, Wang J, Liu J, Zhang P, Kudoyarova G, et al. 2024. Spatially distributed cytokinins: metabolism, signaling, and transport. Plant Communications 5:100936

doi: 10.1016/j.xplc.2024.100936
[9]

Li M, Yu G, Cao C, Liu P. 2021. Metabolism, signaling, and transport of jasmonates. Plant Communications 2(5):100231

doi: 10.1016/j.xplc.2021.100231
[10]

Gomi K. 2020. Jasmonic acid: an essential plant hormone. International Journal of Molecular Sciences 21:1261

doi: 10.3390/ijms21041261
[11]

Kachroo P, Liu H, Kachroo A. 2020. Salicylic acid: transport and long-distance immune signaling. Current Opinion in Virology 42:53−57

doi: 10.1016/j.coviro.2020.05.008
[12]

Kwon CT, Tang L, Wang X, Gentile I, Hendelman A, et al. 2022. Dynamic evolution of small signalling peptide compensation in plant stem cell control. Nature Plants 8:346−55

doi: 10.1038/s41477-022-01118-w
[13]

Zhang Z, Han H, Zhao J, Liu Z, Deng L, et al. 2025. Peptide hormones in plants. Molecular Horticulture 5:7

doi: 10.1186/s43897-024-00134-y
[14]

Do THT, Martinoia E, Lee Y. 2018. Functions of ABC transporters in plant growth and development. Current Opinion in Plant Biology 41:32−38

doi: 10.1016/j.pbi.2017.08.003
[15]

Wu G, Carville JS, Spalding EP. 2016. ABCB19-mediated polar auxin transport modulates Arabidopsis hypocotyl elongation and the endoreplication variant of the cell cycle. The Plant Journal 85:209−18

doi: 10.1111/tpj.13095
[16]

Ying W, Wang Y, Wei H, Luo Y, Ma Q, et al. 2024. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 383:eadj4591

doi: 10.1126/science.adj4591
[17]

Pawela A, Banasiak J, Biała W, Martinoia E, Jasiński M. 2019. MtABCG20 is an ABA exporter influencing root morphology and seed germination of Medicago truncatula. The Plant Journal 98:511−23

doi: 10.1111/tpj.14234
[18]

Banasiak J, Borghi L, Stec N, Martinoia E, Jasiński M. 2020. The full-size ABCG transporter of Medicago truncatula is involved in strigolactone secretion, affecting arbuscular mycorrhiza. Frontiers in Plant Science 11:18

doi: 10.3389/fpls.2020.00018
[19]

Zhang K, Novak O, Wei Z, Gou M, Zhang X, et al. 2014. Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nature Communications 5:3274

doi: 10.1038/ncomms4274
[20]

Zhao J, Yu N, Ju M, Fan B, Zhang Y, et al. 2019. ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. Journal of Experimental Botany 70:6277−91

doi: 10.1093/jxb/erz382
[21]

Aryal B, Huynh J, Schneuwly J, Siffert A, Liu J, et al. 2019. ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Frontiers in Plant Science 10:899

doi: 10.3389/fpls.2019.00899
[22]

Kang J, Park J, Choi H, Burla B, Kretzschmar T, et al. 2011. Plant ABC transporters. The Arabidopsis Book 9:e0153

doi: 10.1199/tab.0153
[23]

Borghi L, Kang J, de Brito Francisco R. 2019. Filling the gap: functional clustering of ABC proteins for the investigation of hormonal transport in planta. Frontiers in Plant Science 10:422

doi: 10.3389/fpls.2019.00422
[24]

Chiba Y, Shimizu T, Miyakawa S, Kanno Y, Koshiba T, et al. 2015. Identification of Arabidopsis thaliana NRT1/PTR FAMILY (NPF) proteins capable of transporting plant hormones. Journal of Plant Research 128:679−86

doi: 10.1007/s10265-015-0710-2
[25]

Léran S, Noguero M, Corratgé-Faillie C, Boursiac Y, Brachet C, et al. 2020. Functional characterization of the Arabidopsis abscisic acid transporters NPF4.5 and NPF4.6 in Xenopus oocytes. Frontiers in Plant Science 11:144

doi: 10.3389/fpls.2020.00144
[26]

Watanabe S, Takahashi N, Kanno Y, Suzuki H, Aoi Y, et al. 2020. The Arabidopsis NRT1/PTR FAMILY protein NPF7.3/NRT1.5 is an indole-3-butyric acid transporter involved in root gravitropism. Proceedings of the National Academy of Sciences of the United States of America 117:31500−9

doi: 10.1073/pnas.2013305117
[27]

Zhang H, Zhu H, Pan Y, Yu Y, Luan S, et al. 2014. A DTX/MATE-type transporter facilitates abscisic acid efflux and modulates ABA sensitivity and drought tolerance in Arabidopsis. Molecular Plant 7:1522−32

doi: 10.1093/mp/ssu063
[28]

Qin P, Zhang G, Hu B, Wu J, Chen W, et al. 2021. Leaf-derived ABA regulates rice seed development via a transporter-mediated and temperature-sensitive mechanism. Science Advances 7:eabc8873

doi: 10.1126/sciadv.abc8873
[29]

Bürkle L, Cedzich A, Döpke C, Stransky H, Okumoto S, et al. 2003. Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. The Plant Journal 34:13−26

doi: 10.1046/j.1365-313X.2003.01700.x
[30]

Qi Z, Xiong L. 2013. Characterization of a purine permease family gene OsPUP7 involved in growth and development control in rice. Journal of Integrative Plant Biology 55:1119−35

doi: 10.1111/jipb.12101
[31]

Hu Y, Patra P, Pisanty O, Shafir A, Belew ZM, et al. 2023. Multi-Knock—a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. Nature Plants 9:572−87

doi: 10.1038/s41477-023-01374-4
[32]

Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, et al. 2008. Regulation of cytokinin biosynthesis, compartmentalization and translocation. Journal of Experimental Botany 59:75−83

doi: 10.1093/jxb/erm157
[33]

Korobova A, Kuluev B, Möhlmann T, Veselov D, Kudoyarova G. 2021. Limitation of cytokinin export to the shoots by nucleoside transporter ENT3 and its linkage with root elongation in Arabidopsis. Cells 10:350

doi: 10.3390/cells10020350
[34]

Hirose N, Makita N, Yamaya T, Sakakibara H. 2005. Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiology 138:196−206

doi: 10.1104/pp.105.060137
[35]

Kanno Y, Oikawa T, Chiba Y, Ishimaru Y, Shimizu T, et al. 2016. AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes. Nature Communications 7:13245

doi: 10.1038/ncomms13245
[36]

Rea PA. 2007. Plant ATP-binding cassette transporters. Annual Review of Plant Biology 58:347−75

doi: 10.1146/annurev.arplant.57.032905.105406
[37]

Locher KP. 2016. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nature Structural & Molecular Biology 23:487−93

doi: 10.1038/nsmb.3216
[38]

Hellsberg E, Montanari F, Ecker GF. 2015. The ABC of phytohormone translocation. Planta Medica 81:474−87

doi: 10.1055/s-0035-1545880
[39]

Borghi L, Kang J, Ko D, Lee Y, Martinoia E. 2015. The role of ABCG-type ABC transporters in phytohormone transport. Biochemical Society Transactions 43:924−30

doi: 10.1042/BST20150106
[40]

Burla B, Pfrunder S, Nagy R, Francisco RM, Lee Y, et al. 2013. Vacuolar transport of abscisic acid glucosyl ester is mediated by ATP-binding cassette and proton-antiport mechanisms in Arabidopsis. Plant Physiology 163:1446−58

doi: 10.1104/pp.113.222547
[41]

Uragami T, Kiba T, Kojima M, Takebayashi Y, Tozawa Y, et al. 2025. The cytokinin efflux transporter ABCC4 participates in Arabidopsis root system development. Plant Physiology 197:kiae628

doi: 10.1093/plphys/kiae628
[42]

Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, et al. 2005. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. implications for transport of jasmonate precursors into peroxisomes. Plant Physiology 137:835−40

doi: 10.1104/pp.105.059352
[43]

Kim A, Chen J, Khare D, Jin JY, Yamaoka Y, et al. 2020. Non-intrinsic ATP-binding cassette proteins ABCI19, ABCI20 and ABCI21 modulate cytokinin response at the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell Reports 39:473−87

doi: 10.1007/s00299-019-02503-0
[44]

Chen J, Hu Y, Hao P, Tsering T, Xia J, et al. 2023. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Reports 24:e56271

doi: 10.15252/embr.202256271
[45]

Jenness MK, Tayengwa R, Murphy AS. 2020. An ATP-binding cassette transporter, ABCB19, regulates leaf position and morphology during Phototropin1-mediated blue light responses. Plant Physiology 184:1601−12

doi: 10.1104/pp.20.00223
[46]

Zhang Y, Nasser V, Pisanty O, Omary M, Wulff N, et al. 2018. A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nature Communications 9:4204

doi: 10.1038/s41467-018-06410-y
[47]

Mellor NL, Voß U, Ware A, Janes G, Barrack D, et al. 2022. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. The Plant Cell 34:2309−27

doi: 10.1093/plcell/koac086
[48]

Mahmood S, Singh IK, Singh A. 2024. ABCB19 transporter: fostering brassinosteroid transport through membrane flexibility. Trends in Plant Science 29:1046−48

doi: 10.1016/j.tplants.2024.06.005
[49]

Dong Y, Su N, Zhang Y. 2024. New wine in an old bottle: ABCB19, known as auxin exporter, also exports brassinosteroids. The Innovation Life 2:100072

doi: 10.59717/j.xinn-life.2024.100072
[50]

Wei H, Zhu H, Ying W, Janssens H, Kvasnica M, et al. 2025. Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1. Plant Communications 6:101181

doi: 10.1016/j.xplc.2024.101181
[51]

Gräfe K, Schmitt L. 2021. The ABC transporter G subfamily in Arabidopsis thaliana. Journal of Experimental Botany 72:92−106

doi: 10.1093/jxb/eraa260
[52]

Wu S, Fang C, Li Z, Wang Y, Pan S, et al. 2022. ATP-binding cassette G transporters and their multiple roles especially for male fertility in Arabidopsis, rice and maize. International Journal of Molecular Sciences 23:9304

doi: 10.3390/ijms23169304
[53]

Dhara A, Raichaudhuri A. 2021. ABCG transporter proteins with beneficial activity on plants. Phytochemistry 184:112663

doi: 10.1016/j.phytochem.2021.112663
[54]

Do THT, Martinoia E, Lee Y, Hwang JU. 2021. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. Plant Physiology 187:1876−92

doi: 10.1093/plphys/kiab193
[55]

Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, et al. 2016. Plant ABC transporters enable many unique aspects of a terrestrial plant's lifestyle. Molecular Plant 9:338−55

doi: 10.1016/j.molp.2016.02.003
[56]

Gräfe K, Shanmugarajah K, Zobel T, Weidtkamp-Peters S, Kleinschrodt D, et al. 2019. Cloning and expression of selected ABC transporters from the Arabidopsis thaliana ABCG family in Pichia pastoris. PLoS One 14:e0211156

doi: 10.1371/journal.pone.0211156
[57]

Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A. 2012. Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265−73

doi: 10.1016/j.gene.2012.06.076
[58]

Munemasa S, Hauser F, Park J, Waadt R, Brandt B, et al. 2015. Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology 28:154−62

doi: 10.1016/j.pbi.2015.10.010
[59]

Manzi M, Lado J, Rodrigo MJ, Zacarías L, Arbona V, et al. 2015. Root ABA accumulation in long-term water-stressed plants is sustained by hormone transport from aerial organs. Plant and Cell Physiology 56:2457−66

doi: 10.1093/pcp/pcv161
[60]

Sauter A, Davies WJ, Hartung W. 2001. The long-distance abscisic acid signal in the droughted plant: the fate of the hormone on its way from root to shoot. Journal of Experimental Botany 52:1991−97

doi: 10.1093/jexbot/52.363.1991
[61]

Hu B, Cao J, Ge K, Li L. 2016. The site of water stress governs the pattern of ABA synthesis and transport in peanut. Scientific Reports 6:32143

doi: 10.1038/srep32143
[62]

Kuromori T, Miyaji T, Yabuuchi H, Shimizu H, Sugimoto E, et al. 2010. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proceedings of the National Academy of Sciences of the United States of America 107:2361−66

doi: 10.1073/pnas.0912516107
[63]

Yang Q, Deng X, Liu T, Qian J, Zhang P, et al. 2024. Abscisic acid root-to-shoot translocation by transporter AtABCG25 mediates stomatal movements in Arabidopsis. Plant Physiology 195:671−84

doi: 10.1093/plphys/kiae073
[64]

Zhou Y, Wang Y, Zhang D, Liang J. 2024. Endomembrane-biased dimerization of ABCG16 and ABCG25 transporters determines their substrate selectivity in ABA-regulated plant growth and stress responses. Molecular Plant 17:478−95

doi: 10.1016/j.molp.2024.02.005
[65]

Kang J, Yim S, Choi H, Kim A, Lee KP, et al. 2015. Abscisic acid transporters cooperate to control seed germination. Nature Communications 6:8113

doi: 10.1038/ncomms9113
[66]

Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, et al. 2010. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proceedings of the National Academy of Sciences of the United States of America 107:2355−60

doi: 10.1073/pnas.0909222107
[67]

Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, et al. 2019. Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytologist 223:853−66

doi: 10.1111/nph.15815
[68]

Zhang Y, Kilambi HV, Liu J, Bar H, Lazary S, et al. 2021. ABA homeostasis and long-distance translocation are redundantly regulated by ABCG ABA importers. Science Advances 7:eabf6069

doi: 10.1126/sciadv.abf6069
[69]

Zhang Y, Anfang M, Rowe JH, Rizza A, Li Z, et al. 2025. ABA importers ABCG17 and ABCG18 redundantly regulate seed size in Arabidopsis. The Plant Journal 121:e70096

doi: 10.1111/tpj.70096
[70]

Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463:178−83

doi: 10.1038/nature08670
[71]

The International Wheat Genome Sequencing Consortium, Bellec A, Berges H, Vautrin S, Alaux M, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191

doi: 10.1126/science.aar7191
[72]

Panchy N, Lehti-Shiu M, Shiu SH. 2016. Evolution of gene duplication in plants. Plant Physiology 171:2294−316

doi: 10.1104/pp.16.00523
[73]

Roulin A, Auer PL, Libault M, Schlueter J, Farmer A, et al. 2013. The fate of duplicated genes in a polyploid plant genome. The Plant Journal 73:143−53

doi: 10.1111/tpj.12026
[74]

Berman A, Su N, Li Z, Landau U, Chakraborty J, et al. 2025. Construction of multi-targeted CRISPR libraries in tomato to overcome functional redundancy at genome-scale level. Nature Communications 16:4111

doi: 10.1038/s41467-025-59280-6
[75]

Hauser F, Chen W, Deinlein U, Chang K, Ossowski S, et al. 2013. A genomic-scale artificial microRNA library as a tool to investigate the functionally redundant gene space in Arabidopsis. The Plant Cell 25:2848−63

doi: 10.1105/tpc.113.112805
[76]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[77]

Dietrich D, Pang L, Kobayashi A, Fozard JA, Boudolf V, et al. 2017. Root hydrotropism is controlled via a cortex-specific growth mechanism. Nature Plants 3:17057

doi: 10.1038/nplants.2017.57
[78]

Seo M, Koshiba T. 2011. Transport of ABA from the site of biosynthesis to the site of action. Journal of Plant Research 124:501−7

doi: 10.1007/s10265-011-0411-4
[79]

Jiang F, Hartung W. 2008. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. Journal of Experimental Botany 59:37−43

doi: 10.1093/jxb/erm127
[80]

Lee KH, Piao HL, Kim HY, Choi SM, Jiang F, et al. 2006. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell 126:1109−20

doi: 10.1016/j.cell.2006.07.034
[81]

Xu ZY, Lee KH, Dong T, Jeong JC, Jin JB, et al. 2012. A vacuolar β-glucosidase homolog that possesses glucose-conjugated abscisic acid hydrolyzing activity plays an important role in osmotic stress responses in Arabidopsis. The Plant Cell 24:2184−99

doi: 10.1105/tpc.112.095935
[82]

Sah SK, Reddy KR, Li J. 2016. Abscisic acid and abiotic stress tolerance in crop plants. Frontiers in Plant Science 7:571

doi: 10.3389/fpls.2016.00571
[83]

Cheng WH, Endo A, Zhou L, Penney J, Chen HC, et al. 2002. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. The Plant Cell 14:2723−43

doi: 10.1105/tpc.006494
[84]

Chen L, Zhang Y, Hao Q, Fu J, Bao Z, et al. 2024. Enhancement of in situ detection and imaging of phytohormones in plant tissues by MALDI-MSI using 2, 4-dihydroxy-5-nitrobenzoic acid as a novel matrix. New Phytologist 243:2021−36

doi: 10.1111/nph.19964
[85]

Lanfranco L, Fiorilli V, Venice F, Bonfante P. 2018. Strigolactones cross the Kingdoms: plants, fungi, and bacteria in the arbuscular mycorrhizal symbiosis. Journal of Experimental Botany 69:2175−88

doi: 10.1093/jxb/erx432
[86]

Zhang J, Mazur E, Balla J, Gallei M, Kalousek P, et al. 2020. Strigolactones inhibit auxin feedback on PIN-dependent auxin transport canalization. Nature Communications 11:3508

doi: 10.1038/s41467-020-17252-y
[87]

Shiratake K, Notaguchi M, Makino H, Yu S, Borghi L. 2019. Petunia PLEIOTROPIC DRUG RESISTANCE 1 is a strigolactone short-distance transporter with long-distance outcomes. Plant and Cell Physiology 60:1722−33

doi: 10.1093/pcp/pcz081
[88]

Shi J, Mei C, Ge F, Hu Q, Ban X, et al. 2025. Resistance to Striga parasitism through reduction of strigolactone exudation. Cell 188:1955−1966.e13

doi: 10.1016/j.cell.2025.01.022
[89]

Kohlen W, Charnikhova T, Liu Q, Bours R, Domagalska MA, et al. 2011. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiology 155:974−87

doi: 10.1104/pp.110.164640
[90]

Kretzschmar T, Kohlen W, Sasse J, Borghi L, Schlegel M, et al. 2012. A Petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching. Nature 483:341−44

doi: 10.1038/nature10873
[91]

Ban X, Qin L, Yan J, Wu J, Li Q, et al. 2025. Manipulation of a strigolactone transporter in tomato confers resistance to the parasitic weed broomrape. The Innovation 6:100815

doi: 10.1016/j.xinn.2025.100815
[92]

Xu J, Zhou W, Li W, Tran LP, Shu K. 2025. Phytoparasite avoidance: manipulation of strigolactone exudation, not biosynthesis. Journal of Integrative Plant Biology 67:1991−93

doi: 10.1111/jipb.13937
[93]

Wang Q, Smith SM, Huang J. 2022. Origins of strigolactone and karrikin signaling in plants. Trends in Plant Science 27:450−59

doi: 10.1016/j.tplants.2021.11.009
[94]

Liu CJ, Zhao Y, Zhang K. 2019. Cytokinin transporters: multisite players in cytokinin homeostasis and signal distribution. Frontiers in Plant Science 10:693

doi: 10.3389/fpls.2019.00693
[95]

Michniewicz M, Ho CH, Enders TA, Floro E, Damodaran S, et al. 2019. TRANSPORTER OF IBA1 links auxin and cytokinin to influence root architecture. Developmental Cell 50:599−609.e4

doi: 10.1016/j.devcel.2019.06.010
[96]

Kang J, Lee Y, Sakakibara H, Martinoia E. 2017. Cytokinin transporters: go and STOP in signaling. Trends in Plant Science 22:455−61

doi: 10.1016/j.tplants.2017.03.003
[97]

Ko D, Kang J, Kiba T, Park J, Kojima M, et al. 2014. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America 111:7150−55

doi: 10.1073/pnas.1321519111
[98]

Davière JM, Achard P. 2017. Organ communication: cytokinins on the move. Nature Plants 3:17116

doi: 10.1038/nplants.2017.116
[99]

Zhao J, Ding B, Zhu E, Deng X, Zhang M, et al. 2021. Phloem unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. Plant Physiology 186:2111−23

doi: 10.1093/plphys/kiab188
[100]

Zhao J, Deng X, Qian J, Liu T, Ju M, et al. 2023. Arabidopsis ABCG14 forms a homodimeric transporter for multiple cytokinins and mediates long-distance transport of isopentenyladenine-type cytokinins. Plant Communications 4:100468

doi: 10.1016/j.xplc.2022.100468
[101]

Yang Q, Zhang J, Kojima M, Takebayashi Y, Uragami T, et al. 2022. ABCG11 modulates cytokinin responses in Arabidopsis thaliana. Frontiers in Plant Science 13:976267

doi: 10.3389/fpls.2022.976267
[102]

Bird D, Beisson F, Brigham A, Shin J, Greer S, et al. 2007. Characterization of Arabidopsis ABCG11/WBC11, an ATP binding cassette (ABC) transporter that is required for cuticular lipid secretion. The Plant Journal 52:485−98

doi: 10.1111/j.1365-313X.2007.03252.x
[103]

Li M, Wang F, Li S, Yu G, Wang L, et al. 2020. Importers drive leaf-to-leaf jasmonic acid transmission in wound-induced systemic immunity. Molecular Plant 13:1485−98

doi: 10.1016/j.molp.2020.08.017
[104]

Thurow C, Krischke M, Mueller MJ, Gatz C. 2020. Induction of jasmonoyl-isoleucine (JA-Ile)-dependent JASMONATE ZIM-DOMAIN (JAZ) genes in NaCl-treated Arabidopsis thaliana roots can occur at very low JA-ile levels and in the absence of the JA/JA-Ile transporter JAT1/AtABCG16. Plants 9:1635

doi: 10.3390/plants9121635
[105]

Li Q, Zheng J, Li S, Huang G, Skilling SJ, et al. 2017. Transporter-mediated nuclear entry of jasmonoyl-isoleucine is essential for jasmonate signaling. Molecular Plant 10:695−708

doi: 10.1016/j.molp.2017.01.010
[106]

Tao N, Liu Y, Zhang B, Guo Y, Wang Q, et al. 2025. SlABCG9 functioning as a jasmonic acid transporter influences tomato resistance to Botrytis cinerea. Journal of Agricultural and Food Chemistry 73:3897−907

doi: 10.1021/acs.jafc.4c09064
[107]

Seo DH, Jeong H, Choi YD, Jang G. 2021. Auxin controls the division of root endodermal cells. Plant Physiology 187:1577−86

doi: 10.1093/plphys/kiab341
[108]

Hammes UZ, Murphy AS, Schwechheimer C. 2022. Auxin transporters—a biochemical view. Cold Spring Harbor Perspectives in Biology 14:a039875

doi: 10.1101/cshperspect.a039875
[109]

Damodaran S, Strader LC. 2019. Indole 3-butyric acid metabolism and transport in Arabidopsis thaliana. Frontiers in Plant Science 10:851

doi: 10.3389/fpls.2019.00851
[110]

Strader LC, Bartel B. 2009. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. The Plant Cell 21:1992−2007

doi: 10.1105/tpc.109.065821
[111]

Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, et al. 2023. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Current Biology 33:2008−2023.e8

doi: 10.1016/j.cub.2023.04.029
[112]

Larsen B, Xu D, Halkier BA, Nour-Eldin HH. 2017. Advances in methods for identification and characterization of plant transporter function. Journal of Experimental Botany 68:4045−56

doi: 10.1093/jxb/erx140
[113]

Yang Z, Wei H, Gan Y, Liu H, Cao Y, et al. 2025. Structural insights into auxin influx mediated by the Arabidopsis AUX1. Cell 188:3960−3973.e15

doi: 10.1016/j.cell.2025.04.028
[114]

Huang X, Zhang X, An N, Zhang M, Ma M, et al. 2023. Cryo-EM structure and molecular mechanism of abscisic acid transporter ABCG25. Nature Plants 9:1709−19

doi: 10.1038/s41477-023-01509-7
[115]

Cecchetti V, Brunetti P, Napoli N, Fattorini L, Altamura MM, et al. 2015. ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. Journal of Integrative Plant Biology 57:1089−98

doi: 10.1111/jipb.12332
[116]

Binenbaum J, Wulff N, Camut L, Kiradjiev K, Anfang M, et al. 2023. Gibberellin and abscisic acid transporters facilitate endodermal suberin formation in Arabidopsis. Nature Plants 9:785−802

doi: 10.1038/s41477-023-01391-3
[117]

Biała-Leonhard W, Bigos A, Brezovsky J, Jasiński M. 2025. Message hidden in α-helices—toward a better understanding of plant ABCG transporters' multispecificity. Plant Physiology 198:kiaf146

doi: 10.1093/plphys/kiaf146
[118]

Akhiyarova G, Finkina EI, Zhang K, Veselov D, Vafina G, et al. 2024. The long-distance transport of some plant hormones and possible involvement of lipid-binding and transfer proteins in hormonal transport. Cells 13:364

doi: 10.3390/cells13050364
[119]

White PJ. 2012. Long-distance transport in the xylem and phloem. In Marschner's Mineral Nutrition of Higher Plants, third edition, ed. Marschner P. San Diego: Academic Press. pp. 49−70 doi: 10.1016/B978-0-12-384905-2.00003-0

[120]

Adamowski M, Friml J. 2015. PIN-dependent auxin transport: action, regulation, and evolution. The Plant Cell 27:20−32

doi: 10.1105/tpc.114.134874
[121]

Vinothkumar KR. 2015. Membrane protein structures without crystals, by single particle electron cryomicroscopy. Current Opinion in Structural Biology 33:103−14

doi: 10.1016/j.sbi.2015.07.009
[122]

An N, Huang X, Yang Z, Zhang M, Ma M, et al. 2024. Cryo-EM structure and molecular mechanism of the jasmonic acid transporter ABCG16. Nature Plants 10:2052−61

doi: 10.1038/s41477-024-01839-0
[123]

Ung KL, Winkler M, Schulz L, Kolb M, Janacek DP, et al. 2022. Structures and mechanism of the plant PIN-FORMED auxin transporter. Nature 609:605−10

doi: 10.1038/s41586-022-04883-y
[124]

Yang Z, Xia J, Hong J, Zhang C, Wei H, et al. 2022. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 609:611−15

doi: 10.1038/s41586-022-05143-9
[125]

Wei H, Yang Z, Liu H, Ying W, Gao Y, et al. 2025. Structural basis of cytokinin transport by the Arabidopsis AZG2. Nature Communications 16:3475

doi: 10.1038/s41467-025-58802-6
[126]

Kanno Y, Hanada A, Chiba Y, Ichikawa T, Nakazawa M, et al. 2012. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proceedings of the National Academy of Sciences of the United States of America 109:9653−58

doi: 10.1073/pnas.1203567109
[127]

Shohat H, Illouz-Eliaz N, Kanno Y, Seo M, Weiss D. 2020. The tomato DELLA protein PROCERA promotes abscisic acid responses in guard cells by upregulating an abscisic acid transporter. Plant Physiology 184:518−28

doi: 10.1104/pp.20.00485
[128]

Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa ICR, et al. 2016. The Arabidopsis NPF3 protein is a GA transporter. Nature Communications 7:11486

doi: 10.1038/ncomms11486
[129]

Yao L, Cheng X, Gu Z, Huang W, Li S, et al. 2018. The AWPM-19 family protein OsPM1 mediates abscisic acid influx and drought response in rice. The Plant Cell 30(6):1258−76

doi: 10.1105/tpc.17.00770
[130]

Zürcher E, Liu J, di Donato M, Geisler M, Müller B. 2016. Plant development regulated by cytokinin sinks. Science 353:1027−30

doi: 10.1126/science.aaf7254
[131]

Xiao Y, Liu D, Zhang G, Gao S, Liu L, et al. 2019. Big Grain3, encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of Integrative Plant Biology 61:581−97

doi: 10.1111/jipb.12727
[132]

Xiao Y, Zhang J, Yu G, Lu X, Mei W, et al. 2020. Endoplasmic reticulum-localized PURINE PERMEASE1 regulates plant height and grain weight by modulating cytokinin distribution in rice. Frontiers in Plant Science 11:618560

doi: 10.3389/fpls.2020.618560
[133]

Radchuk V, Belew ZM, Gündel A, Mayer S, Hilo A, et al. 2023. SWEET11b transports both sugar and cytokinin in developing barley grains. The Plant Cell 35:2186−207

doi: 10.1093/plcell/koad055
[134]

Mansfield TA, Schultes NP, Mourad GS. 2009. AtAzg1 and AtAzg2 comprise a novel family of purine transporters in Arabidopsis. FEBS Letters 583:481−86

doi: 10.1016/j.febslet.2008.12.048
[135]

Tessi TM, Brumm S, Winklbauer E, Schumacher B, Pettinari G, et al. 2021. Arabidopsis AZG2 transports cytokinins in vivo and regulates lateral root emergence. New Phytologist 229:979−93

doi: 10.1111/nph.16943
[136]

Guan L, Denkert N, Eisa A, Lehmann M, Sjuts I, et al. 2019. JASSY, a chloroplast outer membrane protein required for jasmonate biosynthesis. Proceedings of the National Academy of Sciences of the United States of America 116:10568−75

doi: 10.1073/pnas.1900482116
[137]

Zhao X, Li N, Song Q, Li X, Meng H, et al. 2021. OPDAT1, a plastid envelope protein involved in 12-oxo-phytodienoic acid export for jasmonic acid biosynthesis in Populus. Tree Physiology 41:1714−28

doi: 10.1093/treephys/tpab037
[138]

Morita M, Imanaka T. 2012. Peroxisomal ABC transporters: structure, function and role in disease. Biochimica et Biophysica Acta 1822:1387−96

doi: 10.1016/j.bbadis.2012.02.009
[139]

Jenness MK, Carraro N, Pritchard CA, Murphy AS. 2019. The Arabidopsis ATP-BINDING CASSETTE transporter ABCB21 regulates auxin levels in cotyledons, the root pericycle, and leaves. Frontiers in Plant Science 10:806

doi: 10.3389/fpls.2019.00806
[140]

Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, et al. 2012. The Arabidopsis concentration -dependent-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. The Plant Journal 69:640−54

doi: 10.1111/j.1365-313X.2011.04818.x
[141]

Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, et al. 2012. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant and Cell Physiology 53:2090−100

doi: 10.1093/pcp/pcs149
[142]

Růžička K, Strader LC, Bailly A, Yang H, Blakeslee J, et al. 2010. Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proceedings of the National Academy of Sciences of the United States of America 107:10749−53

doi: 10.1073/pnas.1005878107
[143]

Han H, Adamowski M, Qi L, Alotaibi SS, Friml J. 2021. PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytologist 232:510−22

doi: 10.1111/nph.17617
[144]

Mravec J, Skůpa P, Bailly A, Hoyerová K, Křeček P, et al. 2009. Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136−40

doi: 10.1038/nature08066
[145]

Bender RL, Fekete ML, Klinkenberg PM, Hampton M, Bauer B, et al. 2013. PIN6 is required for nectary auxin response and short stamen development. The Plant Journal 74:893−904

doi: 10.1111/tpj.12184
[146]

Cazzonelli CI, Vanstraelen M, Simon S, Yin K, Carron-Arthur A, et al. 2013. Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 8:e70069

doi: 10.1371/journal.pone.0070069
[147]

Feraru E, Feraru MI, Barbez E, Waidmann S, Sun L, et al. 2019. PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 116:3893−98

doi: 10.1073/pnas.1814015116
[148]

Sauer M, Kleine-Vehn J. 2019. PIN-FORMED and PIN-LIKES auxin transport facilitators. Development 146:dev168088

doi: 10.1242/dev.168088
[149]

Farquharson KL. 2012. An auxin influx transporter regulates vascular patterning in cotyledons. The Plant Cell 24:2707

doi: 10.1105/tpc.112.240710
[150]

Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, et al. 2013. Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nature Communications 4:2625

doi: 10.1038/ncomms3625
[151]

Sakuraba Y, Chaganzhana, Mabuchi A, Iba K, Yanagisawa S. 2021. Enhanced NRT1.1/NPF6.3 expression in shoots improves growth under nitrogen deficiency stress in Arabidopsis. Communications Biology 4:256

doi: 10.1038/s42003-021-01775-1
[152]

Saito H, Oikawa T, Hamamoto S, Ishimaru Y, Kanamori-Sato M, et al. 2015. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nature Communications 6:6095

doi: 10.1038/ncomms7095
[153]

Morii M, Sugihara A, Takehara S, Kanno Y, Kawai K, et al. 2020. The dual function of OsSWEET3a as a gibberellin and glucose transporter is important for young shoot development in rice. Plant and Cell Physiology 61:1935−45

doi: 10.1093/pcp/pcaa130
[154]

Choi J, Eom S, Shin K, Lee RA, Choi S, et al. 2019. Identification of lysine histidine transporter 2 as an 1-aminocyclopropane carboxylic acid transporter in Arabidopsis thaliana by transgenic complementation approach. Frontiers in Plant Science 10:1092

doi: 10.3389/fpls.2019.01092
[155]

Serrano M, Wang B, Aryal B, Garcion C, Abou-Mansour E, et al. 2013. Export of salicylic acid from the chloroplast requires the multidrug and toxin extrusion-like transporter EDS5. Plant Physiology 162:1815−21

doi: 10.1104/pp.113.218156
[156]

Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, et al. 2019. Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365(6452):498−502

doi: 10.1126/science.aaw1720