[1]

Jill Harrison C. 2017. Development and genetics in the evolution of land plant body plans. Philosophical Transactions of the Royal Society B, Biological Sciences 372:20150490

doi: 10.1098/rstb.2015.0490
[2]

Wallace S, Fleming A, Wellman CH, Beerling DJ. 2011. Evolutionary development of the plant and spore wall. AoB Plants 2011:plr027

doi: 10.1093/aobpla/plr027
[3]

Bai SN. 2017. Reconsideration of plant morphological traits: from a structure-based perspective to a function-based evolutionary perspective. Frontiers in Plant Science 8:345

doi: 10.3389/fpls.2017.00345
[4]

Ariizumi T, Toriyama K. 2011. Genetic regulation of sporopollenin synthesis and pollen exine development. Annual Review of Plant Biology 62:437−60

doi: 10.1146/annurev-arplant-042809-112312
[5]

Shi C, Liu H. 2021. How plants protect themselves from ultraviolet-B radiation stress. Plant Physiology 187:1096−103

doi: 10.1093/plphys/kiab245
[6]

Chen Z, Dong Y, Huang X. 2022. Plant responses to UV-B radiation: signaling, acclimation and stress tolerance. Stress Biology 2:51

doi: 10.1007/s44154-022-00076-9
[7]

Musil CF. 1995. Differential effects of elevated ultraviolet-B radiation on the photochemical and reproductive performances of dicotyledonous and monocotyledonous arid-environment ephemerals. Plant, Cell & Environment 18:844−54

doi: 10.1111/j.1365-3040.1995.tb00593.x
[8]

Benca JP, Duijnstee IAP, Looy CV. 2018. UV-B-induced forest sterility: implications of ozone shield failure in Earth's largest extinction. Science Advances 4:e1700618

doi: 10.1126/sciadv.1700618
[9]

Gray LA, Varga S, Soulsbury CD. 2024. Increased UV intensity reduces pollen viability in Brassica rapa. Flora 319:152582

doi: 10.1016/j.flora.2024.152582
[10]

Cun S, Zhang C, Chen J, Qian L, Sun H, et al. 2024. Effects of UV-B radiation on pollen germination and tube growth: a global meta-analysis. Science of The Total Environment 915:170097

doi: 10.1016/j.scitotenv.2024.170097
[11]

Grienenberger E, Quilichini TD. 2021. The toughest material in the plant kingdom: an update on sporopollenin. Frontiers in Plant Science 12:703864

doi: 10.3389/fpls.2021.703864
[12]

Rozema J, Broekman RA, Blokker P, Meijkamp BB, de Bakker N, et al. 2001. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. Journal of Photochemistry and Photobiology B: Biology 62:108−17

doi: 10.1016/S1011-1344(01)00155-5
[13]

Willemse MTM. 1972. Changes in the autofluorescence of the pollen wall during microsporogenesis and chemical treatments. Acta Botanica Neerlandica 21:1−16

doi: 10.1111/j.1438-8677.1972.tb00742.x
[14]

Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, et al. 2011. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. Plant Physiology 157:947−70

doi: 10.1104/pp.111.179523
[15]

Xue JS, Zhang B, Zhan H, Lv YL, Jia XL, et al. 2020. Phenylpropanoid derivatives are essential components of sporopollenin in vascular plants. Molecular Plant 13:1644−53

doi: 10.1016/j.molp.2020.08.005
[16]

Xue JS, Qiu S, Jia XL, Shen SY, Shen CW, et al. 2023. Stepwise changes in flavonoids in spores/pollen contributed to terrestrial adaptation of plants. Plant Physiology 193:627−42

doi: 10.1093/plphys/kiad313
[17]

Hsieh K, Huang AHC. 2007. Tapetosomes in Brassica tapetum accumulate endoplasmic reticulum–derived flavonoids and alkanes for delivery to the pollen surface. The Plant Cell 19:582−96

doi: 10.1105/tpc.106.049049
[18]

Nierop KGJ, Versteegh GJM, Filley TR, de Leeuw JW. 2019. Quantitative analysis of diverse sporomorph-derived sporopollenins. Phytochemistry 162:207−15

doi: 10.1016/j.phytochem.2019.03.023
[19]

Quilichini TD, Grienenberger E, Douglas CJ. 2015. The biosynthesis, composition and assembly of the outer pollen wall: a tough case to crack. Phytochemistry 113:170−82

doi: 10.1016/j.phytochem.2014.05.002
[20]

Chen X, Huang DD, Xue JS, Bu JH, Guo MQ, et al. 2024. Polymeric phenylpropanoid derivatives crosslinked by hydroxyl fatty acids form the core structure of rape sporopollenin. Nature Plants 10:1790−800

doi: 10.1038/s41477-024-01825-6
[21]

Rozema J, Noordijk AJ, Broekman RA, van Beem A, Meijkamp BM, et al. 2001. (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B–a new proxy for the reconstruction of past solar UV-B? Plant Ecology 154:9−26

doi: 10.1023/A:1012913608353
[22]

Blokker P, Yeloff D, Boelen P, Broekman RA, Rozema J. 2005. Development of a proxy for past surface UV-B irradiation: a thermally assisted hydrolysis and methylation py-GC/MS method for the analysis of pollen and spores. Analytical Chemistry 77:6026−31

doi: 10.1021/ac050696k
[23]

Willis KJ, Feurdean A, Birks HJB, Bjune AE, Breman E, et al. 2011. Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. New Phytologist 192:553−60

doi: 10.1111/j.1469-8137.2011.03815.x
[24]

Jardine PE, Fraser WT, Lomax BH, Sephton MA, Shanahan TM, et al. 2016. Pollen and spores as biological recorders of past ultraviolet irradiance. Scientific Reports 6:39269

doi: 10.1038/srep39269
[25]

Bell BA, Fletcher WJ, Ryan P, Seddon AWR, Wogelius RA, et al. 2018. UV-B-absorbing compounds in modern Cedrus atlantica pollen: the potential for a summer UV-B proxy for Northwest Africa. The Holocene 28:1382−94

doi: 10.1177/0959683618777072
[26]

Seddon AWR, Festi D, Robson TM, Zimmermann B. 2019. Fossil pollen and spores as a tool for reconstructing ancient solar-ultraviolet irradiance received by plants: an assessment of prospects and challenges using proxy-system modelling. Photochemical & Photobiological Sciences 18:275−94

doi: 10.1039/C8PP00490K
[27]

Liu F, Peng H, Marshall JEA, Lomax BH, Bomfleur B, et al. 2023. Dying in the Sun: direct evidence for elevated UV-B radiation at the end-Permian mass extinction. Science Advances 9:eabo6102

doi: 10.1126/sciadv.abo6102
[28]

Mitsumoto K, Yabusaki K, Aoyagi H. 2009. Classification of pollen species using autofluorescence image analysis. Journal of Bioscience and Bioengineering 107:90−94

doi: 10.1016/j.jbiosc.2008.10.001
[29]

O'Connor DJ, Iacopino D, Healy DA, O'Sullivan D, Sodeau JR. 2011. The intrinsic fluorescence spectra of selected pollen and fungal spores. Atmospheric Environment 45:6451−58

doi: 10.1016/j.atmosenv.2011.07.044
[30]

The 1001 Genomes Consortium. 2016. 1, 135 Genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166:481−91

doi: 10.1016/j.cell.2016.05.063
[31]

Yeloff D, Blokker P, Boelen P, Rozema J. 2008. Is pollen morphology of Salix polaris affected by enhanced UV-B irradiation? Results from a field experiment in high Arctic tundra. Arctic, Antarctic & Alpine Research 40:770−74

doi: 10.1657/1523-0430(07-045)[YELOFF]2.0.CO;2
[32]

McKenzie RL, Ben Liley J, Björn LO. 2009. UV radiation: balancing risks and benefits. Photochemistry and Photobiology 85:88−98

doi: 10.1111/j.1751-1097.2008.00400.x
[33]

Provart NJ, Alonso J, Assmann SM, Bergmann D, Brady SM, et al. 2016. 50 years of Arabidopsis research: highlights and future directions. New Phytologist 209:921−44

doi: 10.1111/nph.13687
[34]

Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, et al. 2011. Adaptation to climate across the Arabidopsis thaliana genome. Science 334:83−86

doi: 10.1126/science.1209244
[35]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3:2−20

doi: 10.1093/mp/ssp106
[36]

Schilmiller AL, Stout J, Weng JK, Humphreys J, Ruegger MO, et al. 2009. Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis. The Plant Jorunal 60:771−82

doi: 10.1111/j.1365-313X.2009.03996.x
[37]

Boerjan W, Ralph J, Baucher M. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:514−94

doi: 10.1146/annurev.arplant.54.031902.134938
[38]

Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, et al. 2006. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology 57:405−30

doi: 10.1146/annurev.arplant.57.032905.105252
[39]

Rozema J, Boelen P, Blokker P. 2005. Depletion of stratospheric ozone over the Antarctic and Arctic: responses of plants of polar terrestrial ecosystems to enhanced UV-B, an overview. Environmental Pollution 137:428−42

doi: 10.1016/j.envpol.2005.01.048
[40]

Ho WC, Li D, Zhu Q, Zhang J. 2020. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Science Advances 6:eaba3388

doi: 10.1126/sciadv.aba3388
[41]

Ho WC, Zhang J. 2018. Evolutionary adaptations to new environments generally reverse plastic phenotypic changes. Nature Communications 9:350

doi: 10.1038/s41467-017-02724-5
[42]

Phillimore AB, Hadfield JD, Jones OR, Smithers RJ. 2010. Differences in spawning date between populations of common frog reveal local adaptation. Proceedings of the National Academy of Sciences of the United States of America 107:8292−97

doi: 10.1073/pnas.0913792107
[43]

Demchik SM, Day TA. 1996. Effect of enhanced UV-B radiation of pollen quantity, quality, and seed yield in Brassica rapa (Brassicaceae). American Journal of Botany 83:573−79

doi: 10.1002/j.1537-2197.1996.tb12741.x
[44]

Torabinejad J, Caldwell MM, Flint SD, Durham S. 1998. Susceptibility of pollen to UV-B radiation: an assay of 34 taxa. American Journal of Botany 85:360−69

doi: 10.2307/2446329
[45]

Feng H, An L, Tan L, Hou Z, Wang X. 2000. Effect of enhanced ultraviolet-B radiation on pollen germination and tube growth of 19 taxa in vitro. Environmental and Experimental Botany 43:45−53

doi: 10.1016/S0098-8472(99)00042-8
[46]

Çetinbaş-Genç A, Toksöz O, Piccini C, Kilin Ö, Sesal NC, et al. 2022. Effects of UV-B radiation on the performance, antioxidant response and protective compounds of hazelnut pollen. Plants 11:2574

doi: 10.3390/plants11192574