[1]

Jia X, Ma L, Li P, Chen M, He C. 2016. Prospects of Poria cocos polysaccharides: Isolation process, structural features and bioactivities. Trends in Food Science & Technology 54:52−62

doi: 10.1016/j.jpgs.2016.05.021
[2]

Zhao M, Guan Z, Tang N, Cheng Y. 2023. The differences between the water- and alkaline-soluble Poria cocos polysaccharide: a review. International Journal of Biological Macromolecules 235:123925

doi: 10.1016/j.ijbiomac.2023.123925
[3]

Li W, Fang K, Yuan H, Li D, Li H, et al. 2023. Acid-induced Poria cocos alkali-soluble polysaccharide hydrogel: Gelation behaviour, characteristics, and potential application in drug delivery. International Journal of Biological Macromolecules 242:124383

doi: 10.1016/j.ijbiomac.2023.124383
[4]

Xu T, Zhang H, Wang S, Xiang Z, Kong H, et al. 2022. A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications. International Journal of Biological Macromolecules 217:536−51

doi: 10.1016/j.ijbiomac.2022.07.070
[5]

Lai Y, Deng H, Fang Q, Ma L, Lei H, et al. 2023. Water-insoluble polysaccharide extracted from Poria cocos alleviates antibiotic-associated diarrhea based on regulating the gut microbiota in mice. Foods 12:3080

doi: 10.3390/foods12163080
[6]

Kim H, Park I, Park K, Park S, Kim YI, et al. 2022. The positive effects of Poria cocos extract on quality of sleep in insomnia rat models. International Journal of Environmental Research and Public Health 19:6629

doi: 10.3390/ijerph19116629
[7]

Zhang F, Zheng H, Zheng T, Xu P, Xu Y, et al. 2024. Adsorption, in vitro digestion and human gut microbiota regulation characteristics of three Poria cocos polysaccharides. Food Science and Human Wellness 13:1685−97

doi: 10.26599/FSHW.2022.9250195
[8]

Yuan H, Lan P, He Y, Li C, Ma X. 2020. Effect of the modifications on the physicochemical and biological properties of β-glucan-a critical review. Molecules 25:57

doi: 10.3390/molecules25010057
[9]

Zhang Y, Xiao W, Ji G, Gao C, Chen X, et al. 2017. Effects of multiscale-mechanical grinding process on physicochemical properties of black tea particles and their water extracts. Food and Bioproducts Processing 105:171−178

doi: 10.1016/j.fbp.2017.05.002
[10]

Huang X, Liang KH, Liu Q, Qiu J, Wang J, et al. 2020. Superfine grinding affects physicochemical, thermal and structural properties of Moringa Oleifera leaf powders. Industrial Crops and Products 151:112472

doi: 10.1016/j.indcrop.2020.112472
[11]

Zhu Y, Zhou X, Zhang Y, Zhan E, Ouyang Z, et al. 2024. Impacts of superfine grinding on structural characteristics and lipid-lowering effect of bitter melon polysaccharides. International Journal of Food Science & Technology 59:3813−22

doi: 10.1111/ijfs.17124
[12]

Wang M, Zhang G, Guo J, He X, Zhang L, et al. 2024. Study on the physicochemical properties and gut microbiota regulation of Poria cocos pachyman treated by ball milling. International Journal of Biological Macromolecules 277:134399

doi: 10.1016/j.ijbiomac.2024.134399
[13]

Meng Q, Fan H, Xu D, Aboshora W, Tang Y, et al. 2017. Superfine grinding improves the bioaccessibility and antioxidant properties of Dendrobium officinale powders. International Journal of Food Science & Technology 52:1440−51

doi: 10.1111/ijfs.13405
[14]

Gao W, Chen F, Wang X, Meng Q. 2020. Recent advances in processing food powders by using superfine grinding techniques: A review. Comprehensive Reviews in Food Science and Food Safety 19:2222−55

doi: 10.1111/1541-4337.12580
[15]

Ozturk OK, Turasan H. 2022. Latest developments in the applications of microfluidization to modify the structure of macromolecules leading to improved physicochemical and functional properties. Critical Reviews in Food Science and Nutrition 62:4481−503

doi: 10.1080/10408398.2021.1875981
[16]

Yu D, Chen J, Ma J, Sun H, Yuan Y, et al. 2018. Effects of different milling methods on physicochemical properties of common buckwheat flour. LWT 92:220−26

doi: 10.1016/j.lwt.2018.02.033
[17]

Xia Q, Gu M, Liu J, Niu Y, Yu L. 2018. Novel composite gels of gelatin and soluble dietary fiber from black bean coats with interpenetrating polymer networks. Food Hydrocolloids 83:72−78

doi: 10.1016/j.foodhyd.2018.04.043
[18]

Luo X, Wang Q, Fang D, Zhuang W, Chen C, et al. 2018. Modification of insoluble dietary fibers from bamboo shoot shell: structural characterization and functional properties. International Journal of Biological Macromolecules 120:1461−67

doi: 10.1016/j.ijbiomac.2018.09.149
[19]

Yu G, Bei J, Zhao J, Li Q, Cheng C. 2018. Modification of carrot (Daucus carota Linn. var. Sativa Hoffm.) pomace insoluble dietary fiber with complex enzyme method, ultrafine comminution, and high hydrostatic pressure. Food Chemistry 257:333−40

doi: 10.1016/j.foodchem.2018.03.037
[20]

DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3):350−56

doi: 10.1021/ac60111a017
[21]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[22]

Whyte JNC, Englar JR. 1974. Determination of uronic acid content of saccharides by acidic decarboxylation: A simplified procedure. Analytical Biochemistry 59:426−435

doi: 10.1016/0003-2697(74)90295-4
[23]

Li M, Li T, Hu X, Ren G, Zhang H, et al. 2021. Structural, rheological properties and antioxidant activities of polysaccharides from mulberry fruits (Murus alba L.) based on different extraction techniques with superfine grinding pretreatment. International Journal of Biological Macromolecules 183:1774−83

doi: 10.1016/j.ijbiomac.2021.05.108
[24]

Busack I, Bringmann H. 2023. A sleep-active neuron can promote survival while sleep behavior is disturbed. PLoS Genetics 19:e1010665

doi: 10.1371/journal.pgen.1010665
[25]

Cheng J, Lei S, Gao L, Zhang Y, Cheng W, et al. 2022. Effects of jet milling on the physicochemical properties of buckwheat flour and the quality characteristics of extruded whole buckwheat noodles. Foods 11:2722

doi: 10.3390/foods11182722
[26]

Lazaridou A, Vouris DG, Zoumpoulakis P, Biliaderis CG. 2018. Physicochemical properties of jet milled wheat flours and doughs. Food Hydrocolloids 80:111−21

doi: 10.1016/j.foodhyd.2018.01.044
[27]

Li J, Xi H, Wang A, Nie M, Gong X, et al. 2024. Effects of high-pressure microfluidization treatment on the structural, physiochemical properties of insoluble dietary fiber in highland barley bran. International Journal of Biological Macromolecules 262:129743

doi: 10.1016/j.ijbiomac.2024.129743
[28]

Drakos A, Kyriakakis G, Evageliou V, Protonotariou S, Mandala I, et al. 2017. Influence of jet milling and particle size on the composition, physicochemical and mechanical properties of barley and rye flours. Food Chemistry 215:326−32

doi: 10.1016/j.foodchem.2016.07.169
[29]

Fang D, Wang Q, Chen C, Li Z, Li S, et al. 2021. Structural characteristics, physicochemical properties and prebiotic potential of modified dietary fibre from the basal part of bamboo shoot. International Journal of Food Science & Technology 56:618−28

doi: 10.1111/ijfs.14709
[30]

Karacam CH, Sahin S, Oztop MH. 2015. Effect of high pressure homogenization (microfluidization) on the quality of Ottoman Strawberry (F. Ananassa) juice. LWT - Food Science and Technology 64:932−37

doi: 10.1016/j.lwt.2015.06.064
[31]

Phat C, Li H, Lee DU, Moon B, Yoo YB, et al. 2015. Characterization of Hericium erinaceum powders prepared by conventional roll milling and jet milling. Journal of Food Engineering 145:19−24

doi: 10.1016/j.jfoodeng.2014.08.001
[32]

Ma ZQ, Zhang N, Zhai XT, Tan B. 2023. Structural, physicochemical and functional properties of dietary fiber from brown rice products treated by different processing techniques. LWT 182:114789

doi: 10.1016/j.lwt.2023.114789
[33]

Adjei-Fremah S, Worku M, De Erive MO, He F, Wang T, et al. 2019. Effect of microfluidization on microstructure, protein profile and physicochemical properties of whole cowpea flours. Innovative Food Science & Emerging Technologies 57:102207

doi: 10.1016/j.ifset.2019.102207
[34]

Wang T, Sun X, Raddatz J, Chen G. 2013. Effects of microfluidization on microstructure and physicochemical properties of corn bran. Journal of Cereal Science 58:355−61

doi: 10.1016/j.jcs.2013.07.003
[35]

Geng N, Wang H, Zhang Y, Song J, Li Y, et al. 2023. Physicochemical, structural, and functional properties of microfluidic modified dietary fiber from fresh corn bracts. Journal of Cereal Science 112:103731

doi: 10.1016/j.jcs.2023.103731
[36]

Wu DT, He Y, Yuan Q, Wang S, Gan RY, et al. 2022. Effects of molecular weight and degree of branching on microbial fermentation characteristics of okra pectic-polysaccharide and its selective impact on gut microbial composition. Food Hydrocolloids 132:107897

doi: 10.1016/j.foodhyd.2022.107897
[37]

Ullah I, Yin T, Xiong S, Zhang J, Din Z, et al. 2017. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT - Food Science and Technology 82:15−22

doi: 10.1016/j.lwt.2017.04.014
[38]

Tan J, Hua X, Liu J, Wang M, Liu Y, et al. 2020. Extraction of sunflower head pectin with superfine grinding pretreatment. Food Chemistry 320:126631

doi: 10.1016/j.foodchem.2020.126631
[39]

Huang L, Shen M, Zhang X, Jiang L, Song Q, et al. 2018. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. Carbohydrate Polymers 200:191−99

doi: 10.1016/j.carbpol.2018.07.087
[40]

Liang X, Gao Y, Pan Y, Zou Y, He M, et al. 2019. Purification, chemical characterization and antioxidant activities of polysaccharides isolated from Mycena dendrobii. Carbohydrate Polymers 203:45−51

doi: 10.1016/j.carbpol.2018.09.046
[41]

Cao JJ, Lv QQ, Yan Z, Chen HQ. 2024. Physicochemical properties and solution conformation of polysaccharides from Toona sinensis (A. Juss) Roem leaves. International Journal of Biological Macromolecules 254:127849

doi: 10.1016/j.ijbiomac.2023.127849
[42]

Cerqueira MA, Pinheiro AC, Souza BWS, Lima ÁMP, Ribeiro C, et al. 2009. Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers 75:408−14

doi: 10.1016/j.carbpol.2008.07.036
[43]

Chen X, Xu X, Zhang L, Kennedy JF. 2009. Flexible chain conformation of (1 → 3)-β-d-glucan from Poria cocos sclerotium in NaOH/urea aqueous solution. Carbohydrate Polymers 75:586−91

doi: 10.1016/j.carbpol.2008.08.027
[44]

Ding M, Liu Y, Ye YF, Zhang JC, Wang JH, et al. 2021. Polysaccharides from the lignified okra: Physicochemical properties and rheological properties. Bioactive Carbohydrates and Dietary Fibre 26:100274

doi: 10.1016/j.bcdf.2021.100274
[45]

Cui C, Lu J, Sun-Waterhouse D, Mu L, Sun W, et al. 2016. Polysaccharides from Laminaria japonica: structural characteristics and antioxidant activity. LWT 73:602−8

doi: 10.1016/j.lwt.2016.07.005
[46]

Miao M, Huang C, Jia X, Cui SW, Jiang B, et al. 2015. Physicochemical characteristics of a high molecular weight bioengineered α-D-glucan from Leuconostoc citreum SK24.002. Food Hydrocolloids 50:37−43

doi: 10.1016/j.foodhyd.2015.04.009
[47]

Chen J, Chen L, Lin S, Liu C, Cheung PCK. 2015. Preparation and structural characterization of a partially depolymerized beta-glucan obtained from Poria cocos sclerotium by ultrasonic treatment. Food Hydrocolloids 46:1−9

doi: 10.1016/j.foodhyd.2014.12.005
[48]

Zhang H, Zou P, Zhao H, Qiu J, Regenstein JM, et al. 2021. Isolation, purification, structure and antioxidant activity of polysaccharide from pinecones of Pinus koraiensis. Carbohydrate Polymers 251:117078

doi: 10.1016/j.carbpol.2020.117078
[49]

Ren F, Feng Y, Zhang H, Wang J. 2021. Effects of modification methods on microstructural and physicochemical characteristics of defatted rice bran dietary fiber. LWT 151:112161

doi: 10.1016/j.lwt.2021.112161
[50]

Chen H, Zhao C, Li J, Hussain S, Yan S, et al. 2018. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root. LWT 93:204−11

doi: 10.1016/j.lwt.2018.03.004
[51]

Ji X, Yan Y, Hou C, Shi M, Liu Y, et al. 2020. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. International Journal of Biological Macromolecules 147:844−52

doi: 10.1016/j.ijbiomac.2019.09.244
[52]

Liu Y, Li Y, Zhang H, Li C, Zhang Z, et al. 2020. Polysaccharides from Cordyceps miltaris cultured at different pH: Sugar composition and antioxidant activity. International Journal of Biological Macromolecules 162:349−58

doi: 10.1016/j.ijbiomac.2020.06.182
[53]

Muhidinov ZK, Bobokalonov JT, Ismoilov IB, Strahan GD, Chau HK, et al. 2020. Characterization of two types of polysaccharides from Eremurus hissaricus roots growing in Tajikistan. Food Hydrocolloids 105:105768

doi: 10.1016/j.foodhyd.2020.105768
[54]

Sahil, Madhumita M, Prabhakar PK. 2024. Effect of dynamic high-pressure treatments on the multi-level structure of starch macromolecule and their techno-functional properties: a review. International Journal of Biological Macromolecules 268:131830

doi: 10.1016/j.ijbiomac.2024.131830
[55]

Yang X, Lu S, Feng Y, Cao C, Zhang Y, et al. 2023. Characteristics and properties of a polysaccharide isolated from Wolfiporia cocos as potential dietary supplement for IBS. Frontiers in Nutrition 10:1119583

doi: 10.3389/fnut.2023.1119583
[56]

Lv Y, Zhang L, Li M, He X, Hao L, et al. 2019. Physicochemical properties and digestibility of potato starch treated by ball milling with tea polyphenols. International Journal of Biological Macromolecules 129:207−13

doi: 10.1016/j.ijbiomac.2019.02.028
[57]

Ng CYJ, Lai NPY, Ng WM, Siah KTH, Gan RY, et al. 2024. Chemical structures, extraction and analysis technologies, and bioactivities of edible fungal polysaccharides from Poria cocos: an updated review. International Journal of Biological Macromolecules 261:129555

doi: 10.1016/j.ijbiomac.2024.129555
[58]

Huang F, Hong R, Zhang R, Dong L, Bai Y, et al. 2019. Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process. International Journal of Biological Macromolecules 132:915−21

doi: 10.1016/j.ijbiomac.2019.04.032
[59]

Sun Y, Guan Y, Khoo HE, Li X. 2021. In vitro assessment of chemical and pre-biotic properties of carboxymethylated polysaccharides from Passiflora edulis peel, xylan, and citrus pectin. Frontiers in Nutrition 8:778563

doi: 10.3389/fnut.2021.778563
[60]

Wang X, Huang M, Yang F, Sun H, Zhou X, et al. 2015. Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro. Carbohydrate Polymers 125:232−40

doi: 10.1016/j.carbpol.2015.02.040
[61]

He C, Zhang R, Jia X, Dong L, Ma Q, et al. 2022. Variation in characterization and probiotic activities of polysaccharides from litchi pulp fermented for different times. Frontiers in Nutrition 9:993828

doi: 10.3389/fnut.2022.993828
[62]

Zou X, Xiao J, Chi J, Zhang M, Zhang R, et al. 2022. Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques. International Journal of Biological Macromolecules 223:663−72

doi: 10.1016/j.ijbiomac.2022.11.057
[63]

Chen Y, Xu L, Lan Y, Liang C, Liu X, et al. 2023. Four novel sleep-promoting peptides screened and identified from bovine casein hydrolysates using a patch-clamp model in vitro and Caenorhabditis elegans in vivo. Food & Function 14:6142−56

doi: 10.1039/D3FO01246H
[64]

Kim H, Choi H, Park BG, Ju HJ, Kim YI. 2023. Efficacy of Poria cocos extract on sleep quality enhancement: a clinical perspective with implications for functional foods. Nutrients 15:4242

doi: 10.3390/nu15194242
[65]

Zhang DD, Li HJ, Zhang HR, Ye XC. 2022. Poria cocos water-soluble polysaccharide modulates anxiety-like behavior induced by sleep deprivation by regulating the gut dysbiosis, metabolic disorders and TNF-α/NF-κB signaling pathway. Food & Function 13:6648−64

doi: 10.1039/d2fo00811d
[66]

Li QY, Dou ZM, Chen C, Jiang YM, Yang B, et al. 2022. Study on the effect of molecular weight on the gut microbiota fermentation properties of blackberry polysaccharides in vitro. Journal of Agricultural and Food Chemistry 70:11245−57

doi: 10.1021/acs.jafc.2c03091