[1]

Fu Q, Yang Z, Bi Y. 2001. Effect of implantation of allogeneic tissue on visual acuity and fundus fluorescein angiography in patients with retinitis pigmentosa. Journal of Xinxiang Medical College 18(6):396−97

doi: 10.3969/j.issn.1004-7239.2001.06.005
[2]

Ma N, Li L, Zhao X, Gong F, Zhang Q, et al. Mutation analysis and prenatal diagnosis of retinitis pigmentosa. The 9th National Academic Exchange Conference on Genetic Disease Diagnosis and Prenatal Diagnosis and Seminar on New Technologies of Prenatal Diagnosis and Medical Genetics, 15 August 2014, Lanzhou (capital of Gansu Province), China. (C)1994-2023 China Academic Journal Electronic Publishing House. pp. 116

[3]

He Y, Zhang Y, Su G. 2015. Recent advances in treatment of retinitis pigmentosa. Current Stem Cell Research & Therapy 10:258−65

doi: 10.2174/1574888x09666141027103552
[4]

Biswal BB. 2012. Resting state fMRI: a personal history. NeuroImage 62:938−44

doi: 10.1016/j.neuroimage.2012.01.090
[5]

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150−57

doi: 10.1038/35084005
[6]

Guo H, Liu W, Li H, Yang J. 2021. Structural and functional brain changes in hemodialysis patients with end-stage renal disease: DTI analysis results and ALFF analysis results. International Journal of Nephrology and Renovascular Disease 14:77−86

doi: 10.2147/IJNRD.S295025
[7]

Hoexter MQ, Biazoli CE Jr, Alvarenga PG, Batistuzzo MC, Salum GA, et al. 2018. Low frequency fluctuation of brain spontaneous activity and obsessive-compulsive symptoms in a large school-age sample. Journal of Psychiatric Research 96:224−30

doi: 10.1016/j.jpsychires.2017.10.009
[8]

Huang X, Zhou FQ, Dan HD, Shen Y. 2018. Abnormal intrinsic brain activity in individuals with peripheral vision loss because of retinitis pigmentosa using amplitude of low-frequency fluctuations. Neuroreport 29:1323−32

doi: 10.1097/WNR.0000000000001116
[9]

Yan CG, Zang YF. 2010. DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience 4:13

doi: 10.3389/fnsys.2010.00013
[10]

Shi WQ, Tang LY, Lin Q, Li B, Jiang N, et al. 2020. Altered spontaneous brain activity patterns in diabetic patients with vitreous hemorrhage using amplitude of low-frequency fluctuation: a resting-state fMRI study. Molecular Medicine Reports 22:2291−99

doi: 10.3892/mmr.2020.11294
[11]

Li K, Zhang M, Zhang H, Li X, Zou F, et al. 2020. The spontaneous activity and functional network of the occipital cortex is correlated with state anxiety in healthy adults. Neuroscience Letters 715:134596

doi: 10.1016/j.neulet.2019.134596
[12]

Lin Q, Zhu FY, Shu YQ, Zhu PW, Ye L, et al. 2021. Altered brain network centrality in middle-aged patients with retinitis pigmentosa: a resting-state functional magnetic resonance imaging study. Brain and Behavior 11:e01983

doi: 10.1002/brb3.1983
[13]

Ling L, Liu WF, Guo Y, Liang RB, Shu HY, et al. 2021. Altered spontaneous brain activity patterns in patients with hyperthyroidism exophthalmos using amplitude of low-frequency fluctuation: a resting-state fMRI study. International Journal of Ophthalmology 14:1957−62

doi: 10.18240/ijo.2021.12.22
[14]

Huang J. 2023. Overview of the function and dysfunction of various lobes of the brain. MSD Manual Professional Edition. Rahway, NJ, USA and its affiliates: Copyright© 2025Merck & Co., Inc. https://www.msdmanuals.com/professional/neurologic-disorders/function-and-dysfunction-of-the-cerebral-lobes/overview-of-cerebral-function

[15]

Çırak M, Yağmurlu K, Kearns KN, Ribas EC, Urgun K, et al. 2020. The caudate nucleus: its connections, surgical implications, and related complications. World Neurosurgery 139:e428−e438

doi: 10.1016/j.wneu.2020.04.027
[16]

Couvy-Duchesne B, Strike LT, de Zubicaray GI, McMahon KL, Thompson PM, et al. 2018. Lingual gyrus surface area is associated with anxiety-depression severity in young adults: a genetic clustering approach. eNeuro 5:ENEURO.0153-17.2017

doi: 10.1523/ENEURO.0153-17.2017
[17]

Habas C, Manto M, Cabaraux P. 2019. The cerebellar thalamus. The Cerebellum 18:635−48

doi: 10.1007/s12311-019-01019-3
[18]

Basso MA, Uhlrich D, Bickford ME. 2005. Cortical function: a view from the thalamus. Neuron 45:485−88

doi: 10.1016/j.neuron.2005.01.035
[19]

Olavarria JF, Qi H, Takahata T, Kaas JH. 2022. Overall patterns of eye-specific retino-geniculo-cortical projections to layers III, IV, and VI in primary visual cortex of the greater Galago (Otolemur crassicudatus), and correlation with cytochrome oxidase blobs. Visual Neuroscience 39:E007

doi: 10.1017/S0952523822000062
[20]

Peng ZY, Liu YX, Li B, Ge QM, Liang RB, et al. 2021. Altered spontaneous brain activity patterns in patients with neovascular glaucoma using amplitude of low-frequency fluctuations: a functional magnetic resonance imaging study. Brain and Behavior 11:e02018

doi: 10.1002/brb3.2018
[21]

Cavanna AE, Trimble MR. 2006. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129:564−83

doi: 10.1093/brain/awl004
[22]

Nagahama Y, Okada T, Katsumi Y, Hayashi T, Yamauchi H, et al. 1999. Transient neural activity in the medial superior frontal gyrus and precuneus time locked with attention shift between object features. NeuroImage 10:193−99

doi: 10.1006/nimg.1999.0451
[23]

Lundstrom BN, Ingvar M, Petersson KM. 2005. The role of precuneus and left inferior frontal cortex during source memory episodic retrieval. NeuroImage 27:824−34

doi: 10.1016/j.neuroimage.2005.05.008
[24]

Utevsky AV, Smith DV, Huettel SA. 2014. Precuneus is a functional core of the default-mode network. The Journal of Neuroscience 34:932−40

doi: 10.1523/JNEUROSCI.4227-13.2014
[25]

Frings L, Wagner K, Quiske A, Schwarzwald R, Spreer J, et al. 2006. Precuneus is involved in allocentric spatial location encoding and recognition. Experimental Brain Research 173:661−72

doi: 10.1007/s00221-006-0408-8
[26]

Ogiso T, Kobayashi K, Sugishita M. 2000. The precuneus in motor imagery: a magnetoencephalographic study. Neuroreport 11:1345−49

doi: 10.1097/00001756-200004270-00039
[27]

Wallentin M, Weed E, Østergaard L, Mouridsen K, Roepstorff A. 2008. Accessing the mental space-Spatial working memory processes for language and vision overlap in precuneus. Human Brain Mapping 29:524−32

doi: 10.1002/hbm.20413
[28]

Liu Y, Li L, Li B, Feng N, Li L, et al. 2017. Decreased triple network connectivity in patients with recent onset post-traumatic stress disorder after a single prolonged trauma exposure. Scientific Reports 7:12625

doi: 10.1038/s41598-017-12964-6
[29]

Carter RM, O'Doherty JP, Seymour B, Koch C, Dolan RJ. 2006. Contingency awareness in human aversive conditioning involves the middle frontal gyrus. NeuroImage 29:1007−12

doi: 10.1016/j.neuroimage.2005.09.011
[30]

Qi CX, Huang X, Shen Y. 2020. Altered intrinsic brain activities in patients with diabetic retinopathy using amplitude of low-frequency fluctuation: a resting-state fMRI study. Diabetes, Metabolic Syndrome and Obesity 13:2833−42

doi: 10.2147/DMSO.S259476
[31]

Schmahmann JD. 2019. The cerebellum and cognition. Neuroscience Letters 688:62−75

doi: 10.1016/j.neulet.2018.07.005
[32]

Dan HD, Zhou FQ, Huang X, Xing YQ, Shen Y. 2019. Altered intra- and inter-regional functional connectivity of the visual cortex in individuals with peripheral vision loss due to retinitis pigmentosa. Vision Research 159:68−75

doi: 10.1016/j.visres.2019.02.013
[33]

Kang HH, Shu YQ, Yang L, Zhu PW, Li D, et al. 2019. Measuring abnormal intrinsic brain activities in patients with retinal detachment using amplitude of low-frequency fluctuation: a resting-state fMRI study. International Journal of Neuroscience 129:681−86

doi: 10.1080/00207454.2018.1554657
[34]

Wang H, Ouyang W, Liu Y, Zhang M, Zhao H, et al. 2022. Visual task-related functional and structural magnetic resonance imaging for the objective quantitation of visual function in patients with advanced retinitis pigmentosa. Frontiers in Aging Neuroscience 14:825204

doi: 10.3389/fnagi.2022.825204