[1]

Bennett JW. 1998. Mycotechnology: the role of fungi in biotechnology. Journal of Biotechnology 66(2−3):101−7

doi: 10.1016/S0168-1656(98)00133-3
[2]

Bilal RM, Hassan FU, Saeed M, Rafeeq M, Zahra N, et al. 2023. Role of yeast and yeast-derived products as feed additives in broiler nutrition. Animal Biotechnology 34(2):392−401

doi: 10.1080/10495398.2021.1942028
[3]

Gao L, Xie C, Liang X, Li Z, Li B, et al. 2021. Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs. Animal Nutrition 7(1):84−93

doi: 10.1016/j.aninu.2020.06.009
[4]

Perricone V, Sandrini S, Irshad N, Savoini G, Comi M, et al. 2022. Yeast-derived products: the role of hydrolyzed yeast and yeast culture in poultry nutrition − a review. Animals 12(11):1426

doi: 10.3390/ani12111426
[5]

Rao ZX, Tokach MD, Woodworth JC, DeRouchey JM, Goodband RD, et al. 2023. Effects of various feed additives on finishing pig growth performance and carcass characteristics: a review. Animals 13(2):200

doi: 10.3390/ani13020200
[6]

White LA, Newman MC, Cromwell GL, Lindemann MD. 2002. Brewers dried yeast as a source of mannan oligosaccharides for weanling pigs. Journal of Animal Science 80(10):2619−28

doi: 10.2527/2002.80102619x
[7]

van Heugten E, Funderburke DW, Dorton KL. 2003. Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. Journal of Animal Science 81(4):1004−12

doi: 10.2527/2003.8141004x
[8]

Weedman SM, Rostagno MH, Patterson JA, Yoon I, Fitzner G, et al. 2011. Yeast culture supplement during nursing and transport affects immunity and intestinal microbial ecology of weanling pigs. Journal of Animal Science 89(6):1908−21

doi: 10.2527/jas.2009-2539
[9]

Espinosa CD, Lagos LV, Stein HH. 2020. Effect of Torula yeast on growth performance, diarrhea incidence, and blood characteristics in weanling pigs. Journal of Animal Science 98(10):skaa307

doi: 10.1093/jas/skaa307
[10]

Deng Z, Jang KB, Jalukar S, Du X, Kim SW. 2023. Efficacy of feed additive containing bentonite and enzymatically hydrolyzed yeast on intestinal health and growth of newly weaned pigs under chronic dietary challenges of fumonisin and aflatoxin. Toxins 15:433

doi: 10.3390/toxins15070433
[11]

Gong YL, Liang JB, Jahromi MF, Wu YB, Wright AG, et al. 2018. Mode of action of Saccharomyces cerevisiae in enteric methane mitigation in pigs. Animal 12(2):239−45

doi: 10.1017/S1751731117001732
[12]

Zhang JY, Park JW, Kim IH. 2019. Effect of supplementation with brewer's yeast hydrolysate on growth performance, nutrients digestibility, blood profiles and meat quality in growing to finishing pigs. Asian-Australasian Journal of Animal Sciences 32(10):1565−72

doi: 10.5713/ajas.18.0837
[13]

Namted S, Poungpong K, Loongyai W, Rakangthong C, Bunchasak C. 2021. Improving growth performance and blood profile by feeding autolyzed yeast to improve pork carcass and meat quality. Animal Sciences Journal 92(1):e13666

doi: 10.1111/asj.13666
[14]

Mayorga EJ, Kvidera SK, Horst EA, Al-Qaisi M, McCarthy CS, et al. 2021. Effects of dietary live yeast supplementation on growth performance and biomarkers of metabolism and inflammation in heat-stressed and nutrient-restricted pigs. Translational Animal Science 5(2):txab072

doi: 10.1093/tas/txab072
[15]

Standard China. 2020. Nutrient requirements of swine No. GB/T 39235-2020. https://openstd.samr.gov.cn/bzgk/std/newGbInfo?hcno=8356B650897CEE7EB81904C9C83892E5

[16]

AOAC International. 2023. Official Methods of Analysis. 22th edition. Arlington, VA, USA: AOAC. www.aoac.org/official-methods-of-analysis

[17]

Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 74(10):3583−97

doi: 10.3168/jds.S0022-0302(91)78551-2
[18]

Fenton TW, Fenton M. 1979. An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science 59(3):631−34

doi: 10.4141/cjas79-081
[19]

Stein HH, Sève B, Fuller MF, Moughan PJ, de Lange CM, et al. 2007. Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. Journal of Animal Science 85(1):172−80

doi: 10.2527/jas.2005-742
[20]

Bayarjargal M, Munkhbat E, Ariunsaikhan T, Odonchimeg M, Uurzaikh T, et al. 2014. Utilization of spent brewer's yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate. Mongolian Journal of Chemistry 12(38):88−91

doi: 10.5564/mjc.v12i0.179
[21]

Liang B, Xing D. 2023. The current and future perspectives of postbiotics. Probiotics and Antimicrobial Proteins 15(6):1626−43

doi: 10.1007/s12602-023-10045-x
[22]

Korolenko TA, Bgatova NP, Vetvicka V. 2019. Glucan and mannan – two peas in a pod. International Journal of Molecular Sciences 20(13):3189

doi: 10.3390/ijms20133189
[23]

Nguyen TH, Fleet GH, Rogers PL. 1998. Composition of the cell walls of several yeast species. Applied Microbiology and Biotechnology 50(2):206−12

doi: 10.1007/s002530051278
[24]

Li J, Karboune S. 2018. A comparative study for the isolation and characterization of mannoproteins from Saccharomyces cerevisiae yeast cell wall. International Journal of Biological Macromolecules 119:654−61

doi: 10.1016/j.ijbiomac.2018.07.102
[25]

Mathiesen R, Eld HMS, Sørensen J, Fuglsang E, Lund LD, et al. 2019. Mannan enhances IL-12 production by increasing bacterial uptake and endosomal degradation in L. acidophilus and S. aureus stimulated dendritic cells. Frontiers in Immunology 10:2646

doi: 10.3389/fimmu.2019.02646
[26]

Cutler AJ, Botto M, van Essen D, Rivi R, Davies KA, et al. 1998. T cell-dependent immune response in C1q-deficient mice: defective interferon gamma production by antigen-specific T cells. The Journal of Experimental Medicine 187(11):1789−97

doi: 10.1084/jem.187.11.1789
[27]

Jacob J, Pescatore A. 2017. Glucans and the poultry immune system. American Journal of Immunology 13(1):45−49

doi: 10.3844/ajisp.2017.45.49
[28]

Omara II, Pender CM, White MB, Dalloul RA. 2021. The modulating effect of dietary beta-glucan supplementation on expression of immune response genes of broilers during a coccidiosis challenge. Animals 11(1):159

doi: 10.3390/ani11010159
[29]

Sun Y, Su J, Yang S, Liu Z, Liu D, et al. 2019. Mannan oligosaccharide protects against the aflatoxin-B1-promoted influenza replication and tissue damages in a toll-like-receptor-4-dependent manner. Journal of Agricultural and Food Chemistry 67(2):735−45

doi: 10.1021/acs.jafc.8b05829
[30]

Yiannikouris A, François J, Poughon L, Dussap CG, Bertin G, et al. 2004. Alkali extraction of β-ᴅ-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. Journal of Agricultural and Food Chemistry 52(11):3666−73

doi: 10.1021/jf035127x
[31]

Chemler JA, Yan Y, Koffas MA. 2006. Biosynthesis of isoprenoids, polyunsaturated fatty acids and flavonoids in Saccharomyces cerevisiae. Microbial Cell Factories 5:20

doi: 10.1186/1475-2859-5-20
[32]

Yang Y, Iji PA, and Choct M. 2009. Dietary modulation of gut microflora in broiler chickens: a review of the role of six kinds of alternatives to in-feed antibiotics. World's Poultry Science Journal 65(1):97

doi: 10.1017/s0043933909000008
[33]

Agazzi A, Perricone V, Omodei Zorini F, Sandrini S, Mariani E, et al. 2020. Dietary mannan oligosaccharides modulate gut inflammatory response and improve duodenal villi height in post-weaning piglets improving feed efficiency. Animals 10(8):1283

doi: 10.3390/ani10081283
[34]

Teng PY, Adhikari R, Llamas-Moya S, Kim WK. 2021. Effects of combination of mannan-oligosaccharides and β-glucan on growth performance, intestinal morphology, and immune gene expression in broiler chickens. Poultry Science 100(12):101483

doi: 10.1016/j.psj.2021.101483
[35]

Sauer N, Mosenthin R, Bauer E. 2011. The role of dietary nucleotides in single-stomached animals. Nutrition Research Reviews 24(1):46−59

doi: 10.1017/S0954422410000326
[36]

Jung B, Batal AB. 2012. Effect of dietary nucleotide supplementation on performance and development of the gastrointestinal tract of broilers. British Poultry Science 53(1):98−105

doi: 10.1080/00071668.2012.659654
[37]

Yan H, Xing Q, Xiao X, Yu B, He J, et al. 2024. Effect of Saccharomyces cerevisiae postbiotics and essential oil on growth performance and intestinal health of weanling pigs during K88 ETEC infection. Journal of Animal Science 102:skae007

doi: 10.1093/jas/skae007
[38]

Xu S, Jia X, Liu Y, Pan X, Chang J, et al. 2023. Effects of yeast-derived postbiotic supplementation in late gestation and lactation diets on performance, milk quality, and immune function in lactating sows. Journal of Animal Science 101:skad201

doi: 10.1093/jas/skad201
[39]

Maamouri O, Ben Salem M. 2021. Effect of yeast culture feed supply on growth, ruminal pH, and digestibility of fattening calves. Food Science & Nutrition 29(5):2762−67

doi: 10.1002/fsn3.2238
[40]

Zhang JC, Chen P, Zhang C, Khalil MM, Zhang NY, et al. 2020. Yeast culture promotes the production of aged laying hens by improving intestinal digestive enzyme activities and the intestinal health status. Poultry Science 99(4):2026−32

doi: 10.1016/j.psj.2019.11.017
[41]

Counotte GH, Prins RA, Janssen RH, Debie MJ. 1981. Role of Megasphaera elsdenii in the fermentation of ᴅʟ-[2-13C]lactate in the rumen of dairy cattle. Applied and Environmental Microbiology 42(4):649−55

doi: 10.1128/aem.42.4.649-655.1981
[42]

Chen L, Shen Y, Wang C, Ding L, Zhao F, et al. 2019. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models. Frontiers in Microbiology 10:162

doi: 10.3389/fmicb.2019.00162
[43]

Holmstrøm K, Collins MD, Møller T, Falsen E, Lawson PA. 2004. Subdoligranulum variabile gen. nov. , sp. nov. from human feces. Anaerobe 10(3):197−203

doi: 10.1016/j.anaerobe.2004.01.004
[44]

Zheng Y, Wang T, Tu X, Huang Y, Zhang H, et al. 2019. Gut microbiome affects the response to anti-PD-1 immunotherapy in patients with hepatocellular carcinoma. Journal for ImmunoTherapy of Cancer 7(1):193

doi: 10.1186/s40425-019-0650-9
[45]

Alessi AM, Gray V, Farquharson FM, Flores-López A, Shaw S, et al. 2020. β-Glucan is a major growth substrate for human gut bacteria related to Coprococcus eutactus. Environmental Microbiology 22(6):2150−64

doi: 10.1111/1462-2920.14977
[46]

Jaskari J, Kontula P, Siitonen A, Jousimies-Somer H, Mattila-Sandholm T, et al. 1998. Oat β-glucan and xylan hydrolysates as selective substrates for Bifidobacterium and Lactobacillus strains. Applied Microbiology and Biotechnology 49(2):175−81

doi: 10.1007/s002530051155
[47]

Sohail MU, Ijaz A, Yousaf MS, Ashraf K, Zaneb H, et al. 2010. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poultry Science 89(9):1934−38

doi: 10.3382/ps.2010-00751
[48]

Russo P, López P, Capozzi V, De Palencia PF, Dueñas MT, et al. 2012. Beta-glucans improve growth, viability and colonization of probiotic microorganisms. International Journal of Molecular Sciences 13(5):6026−39

doi: 10.3390/ijms13056026
[49]

Holscher HD. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8(2):172−84

doi: 10.1080/19490976.2017.1290756
[50]

Sharma AN, Kumar S, Tyagi AK. 2018. Effects of mannan-oligosaccharides and Lactobacillus acidophilus supplementation on growth performance, nutrient utilization and faecal characteristics in Murrah buffalo calves. Journal of Animal Physiology and Animal Nutrition 102(3):679−89

doi: 10.1111/jpn.12878
[51]

Dar AH, Singh SK, Rahman JU, Ahmad SF. 2022. The effects of probiotic Lactobacillus acidophilus and/or prebiotic mannan oligosaccharides on growth performance, nutrient utilization, blood metabolites, faecal bacteria, and economics of crossbred calves. Iranian Journal of Veterinary Research 23(4):322−30

doi: 10.22099/IJVR.2022.42992.6259
[52]

Kim S, Kwak J, Song M, Cho J, Kim ES, et al. 2023. Effects of Lacticaseibacillus casei (Lactobacillus casei) and Saccharomyces cerevisiae mixture on growth performance, hematological parameters, immunological responses, and intestinal microbiome in weaned pigs. Frontiers in Veterinary Science 10:1140718

doi: 10.3389/fvets.2023.1140718
[53]

El Kaoutari A, Armougom F, Gordon JI, Raoult D, Henrissat B. 2013. The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology 11(7):497−504

doi: 10.1038/nrmicro3050
[54]

Lindstad LJ, Lo G, Leivers S, Lu Z, Michalak L, et al. 2021. Human gut Faecalibacterium prausnitzii deploys a highly efficient conserved system to cross-feed on β-mannan-derived oligosaccharides. mBio 12(3):e0362820

doi: 10.1128/mBio.03628-20
[55]

Liu X, Mao B, Gu J, Wu J, Cui S, et al. 2021. Blautia − a new functional genus with potential probiotic properties? Gut Microbes 13(1):1875796

doi: 10.1080/19490976.2021.1875796
[56]

Lebas M, Garault P, Carrillo D, Codoñer FM, Derrien M. 2020. Metabolic response of Faecalibacterium prausnitzii to cell-free supernatants from lactic acid bacteria. Microorganisms 8(10):1528

doi: 10.3390/microorganisms8101528
[57]

D'hoe K, Conterno L, Fava F, Falony G, Vieira-Silva S, et al. 2018. Prebiotic wheat bran fractions induce specific microbiota changes. Frontiers in Microbiology 9:31

doi: 10.3389/fmicb.2018.00031
[58]

Hirayama S, Furukawa S, Ogihara H, Morinaga Y. 2012. Yeast mannan structure necessary for co-aggregation with Lactobacillus plantarum ML11-11. Biochemical and Biophysical Research Communications 419(4):652−55

doi: 10.1016/j.bbrc.2012.02.068
[59]

Jalilsood T, Baradaran A, Song AA, Foo HL, Mustafa S, et al. 2015. Inhibition of pathogenic and spoilage bacteria by a novel biofilm-forming Lactobacillus isolate: a potential host for the expression of heterologous proteins. Microbial Cell Factories 14:96

doi: 10.1186/s12934-015-0283-8
[60]

Gómez NC, Ramiro JMP, Quecan BXV, de Melo Franco BDG. 2016. Use of potential probiotic lactic acid bacteria (LAB) biofilms for the control of Listeria monocytogenes, Salmonella Typhimurium, and Escherichia coli O157:H7 biofilms formation. Frontiers in Microbiology 7:863

doi: 10.3389/fmicb.2016.00863
[61]

Saunders LP, Bischoff KM, Bowman MJ, Leathers TD. 2019. Inhibition of Lactobacillus biofilm growth in fuel ethanol fermentations by Bacillus. Bioresource Technology 272:156−61

doi: 10.1016/j.biortech.2018.10.016
[62]

Yamasaki-Yashiki S, Sawada H, Kino-Oka M, Katakura Y. 2017. Analysis of gene expression profiles of Lactobacillus paracasei induced by direct contact with Saccharomyces cerevisiae through recognition of yeast mannan. Bioscience of Microbiota, Food and Health 36(1):17−25

doi: 10.12938/bmfh.BMFH-2016-015
[63]

Fadel A, Plunkett A, Li W, Ranneh Y, Tessu Gyamfi VE, et al. 2018. Arabinoxylans from rice bran and wheat immunomodulatory potentials: a review article. Nutrition & Food Science 48(1):97−110

doi: 10.1108/nfs-06-2017-0111
[64]

Hughes SA, Shewry PR, Li L, Gibson GR, Sanz ML, et al. 2007. In vitro fermentation by human fecal microflora of wheat arabinoxylans. Journal of Agricultural and Food Chemistry 55(11):4589−95

doi: 10.1021/jf070293g
[65]

Maske BL, de Melo Pereira GV, da S Vale A, de Carvalho Neto DP, Karp SG, et al. 2021. A review on enzyme-producing lactobacilli associated with the human digestive process: from metabolism to application. Enzyme and Microbial Technology 149:109836

doi: 10.1016/j.enzmictec.2021.109836
[66]

Ming L, Zhang Q, Yang L, Huang JA. 2015. Comparison of antibacterial effects between antimicrobial peptide and bacteriocins isolated from Lactobacillus plantarum on three common pathogenic bacteria. International Journal of Clinical and Experimental Medicine 8(4):5806−11

[67]

Raveschot C, Cudennec B, Coutte F, Flahaut C, Fremont M, et al. 2018. Production of bioactive peptides by Lactobacillus species: from gene to application. Frontiers in Microbiology 9:2354

doi: 10.3389/fmicb.2018.02354
[68]

Hernández-González JC, Martínez-Tapia A, Lazcano-Hernández G, García-Pérez BE, Castrejón-Jiménez NS. 2021. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine. Animals 11(4):979

doi: 10.3390/ani11040979
[69]

Wu Y, Jiao N, Zhu R, Zhang Y, Wu D, et al. 2021. Identification of microbial markers across populations in early detection of colorectal cancer. Nature Communications 12(1):3063

doi: 10.1038/s41467-021-23265-y
[70]

Könönen E, Gursoy UK. 2022. Oral Prevotella species and their connection to events of clinical relevance in gastrointestinal and respiratory tracts. Frontiers in Microbiology 12:798763

doi: 10.3389/fmicb.2021.798763
[71]

Sharma G, Garg N, Hasan S, Shirodkar S. 2022. Prevotella: an insight into its characteristics and associated virulence factors. Microbial Pathogenesis 169:105673

doi: 10.1016/j.micpath.2022.105673
[72]

Cheng MP, Domingo MC, Lévesque S, Yansouni CP. 2016. A case report of a deep surgical site infection with Terrisporobacter glycolicus/T. Mayombei and review of the literature. BMC Infectious Diseases 16(1):529

doi: 10.1186/s12879-016-1865-8
[73]

Böer T, Bengelsdorf FR, Bömeke M, Daniel R, Poehlein A. 2023. Genome-based metabolic and phylogenomic analysis of three Terrisporobacter species. PLoS One 18(10):e0290128

doi: 10.1371/journal.pone.0290128
[74]

Su Y, Yao W, Perez-Gutierrez ON, Smidt H, Zhu WY. 2008. Changes in abundance of Lactobacillus spp. and Streptococcus suis in the stomach, jejunum and ileum of piglets after weaning. FEMS Microbiology Ecology 66(3):546−55

doi: 10.1111/j.1574-6941.2008.00529.x
[75]

Kourelis A, Zinonos I, Kakagianni M, Christidou A, Christoglou N, et al. 2010. Validation of the dorsal air pouch model to predict and examine immunostimulatory responses in the gut. Journal of Applied Microbiology108(1):274−84

doi: 10.1111/j.1365-2672.2009.04421.x
[76]

Anderson KV. 2000. Toll signaling pathways in the innate immune response. Current Opinion in Immunology 12(1):13−19

doi: 10.1016/S0952-7915(99)00045-X
[77]

Gill HS, Rutherfurd KJ. 2001. Viability and dose-response studies on the effects of the immunoenhancing lactic acid bacterium Lactobacillus rhamnosus in mice. British Journal of Nutrition 86(2):285−89

doi: 10.1079/BJN2001402
[78]

Tuma PL, Hubbard AL. 2003. Transcytosis: crossing cellular barriers. Physiological Reviews 83(3):871−932

doi: 10.1152/physrev.00001.2003
[79]

Ouwehand AC, Tiihonen K, Saarinen M, Putaala H, Rautonen N. 2009. Influence of a combination of Lactobacillus acidophilus NCFM and lactitol on healthy elderly: intestinal and immune parameters. British Journal of Nutrition 101(3):367−75

doi: 10.1017/S0007114508003097
[80]

De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, et al. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156(1−2):84−96

doi: 10.1016/j.cell.2013.12.016
[81]

El Hage R, Hernandez-Sanabria E, Calatayud Arroyo M, Van de Wiele T. 2020. Supplementation of a propionate-producing consortium improves markers of insulin resistance in an in vitro model of gut-liver axis. American Journal of Physiology Endocrinology and Metabolism 318(5):E742−E749

doi: 10.1152/ajpendo.00523.2019
[82]

Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, et al. 2003. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry 278(13):11312−19

doi: 10.1074/jbc.M211609200
[83]

Tazoe H, Otomo Y, Kaji I, Tanaka R, Karaki SI, et al. 2008. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. Journal of Physiology and Pharmacology 59(Suppl 2):251−62

[84]

Zhao Y, Liu C, Niu J, Cui Z, Zhao X, et al. 2023. Impacts of dietary fiber level on growth performance, apparent digestibility, intestinal development, and colonic microbiota and metabolome of pigs. Journal of Animal Science 101:skad174

doi: 10.1093/jas/skad174
[85]

Zhang W, Li D, Liu L, Zang J, Duan Q, et al. 2013. The effects of dietary fiber level on nutrient digestibility in growing pigs. Journal of Animal Science and Biotechnology 4(1):17

doi: 10.1186/2049-1891-4-17
[86]

Orlando U, Lu N, Vier C, Cast W, Zhou X, et al. 2020. Effects of dietary neutral detergent fiber and standardized ileal digestible lysine levels on growth performance and carcass characteristics of growing-finishing pigs. Journal of Animal Science 98(Supplement_3):57−58

doi: 10.1093/jas/skaa054.103
[87]

Henderson AJ, Ollila CA, Kumar A, Borresen EC, Raina K, et al. 2012. Chemopreventive properties of dietary rice bran: current status and future prospects. Advances in Nutrition 3(5):643−53

doi: 10.3945/an.112.002303
[88]

Stevenson L, Phillips F, O'Sullivan K, Walton J. 2012. Wheat bran: its composition and benefits to health, a European perspective. International Journal of Food Sciences and Nutrition 63(8):1001−13

doi: 10.3109/09637486.2012.687366
[89]

Goufo P, Trindade H. 2014. Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science & Nutrition 2(2):75−104

doi: 10.1002/fsn3.86