[1]

Jin H, Yuan W, Li W, Yang J, Zhou Z, et al. 2023. Combustion chemistry of aromatic hydrocarbons. Progress in Energy and Combustion Science 96:101076

doi: 10.1016/j.pecs.2023.101076
[2]

Tan X, Wu S, Li Y, Zhang Q, Hu Q, et al. 2022. Highly efficient photothermocatalytic CO2 reduction in Ni/Mg-doped Al2O3 with high fuel production rate, large light-to-fuel efficiency, and good durability. Energy & Environmental Materials 5:582−91

doi: 10.1002/eem2.12193
[3]

Liu F, Yon J, Morán J, Kelesidis GA, Escudero F, et al. 2025. Progress in multi-scale modeling of soot particle aggregation in laminar sooting flames. Progress in Energy and Combustion Science 110:101234

doi: 10.1016/j.pecs.2025.101234
[4]

Lao CT, Akroyd J, Kraft M. 2023. Modelling treatment of deposits in particulate filters for internal combustion emissions. Progress in Energy and Combustion Science 96:101043

doi: 10.1016/j.pecs.2022.101043
[5]

Liu P, Li S. 2025. Influence of maturity on the oxidation kinetics and nanostructure evolution of soot sampled from a propane coflow diffusion flame. Progress in Reaction Kinetics and Mechanism 50:e001

doi: 10.48130/prkm-0025-0001
[6]

Escudero F, Fuentes A, Demarco R, Consalvi JL, Liu F, et al. 2016. Effects of oxygen index on soot production and temperature in an ethylene inverse diffusion flame. Experimental Thermal and Fluid Science 73:101−8

doi: 10.1016/j.expthermflusci.2015.09.029
[7]

Chu H, Yan Y, Xiang L, Han W, Ren F, et al. 2020. Effect of oxygen-rich combustion on soot formation in laminar co-flow propane diffusion flames. Journal of the Energy Institute 93:822−32

doi: 10.1016/j.joei.2019.04.01
[8]

Chu H, Han W, Cao W, Tao C, Raza M, et al. 2019. Experimental investigation of soot morphology and primary particle size along axial and radial direction of an ethylene diffusion flame via electron microscopy. Journal of the Energy Institute 92:1294−302

doi: 10.1016/j.joei.2018.10.005
[9]

Bukar M, Basnet S, Liu P, Magnotti G. 2025. Effect of oxygen concentration and N2-substitution on soot formation of a coflow oxy-fuel CH4 laminar diffusion flames. Fuel 386:134291

doi: 10.1016/j.fuel.2025.134291
[10]

Gong Y, Wu J, Wu Y, Guo Q, Wang X, et al. 2025. Experimental study on chemiluminescence characteristics in Methane-Oxygen laminar flame affected by DC electric field. Fuel 390:134679

doi: 10.1016/j.fuel.2025.134679
[11]

Wu B, Li T, Yang K, Zhao X, Mitra T, et al. 2024. Chemistry of inverse diffusion ethylene sooting flames with different oxygen indexes: an experimental and numerical study. Combustion and Flame 268:113649

doi: 10.1016/j.combustflame.2024.113649
[12]

Zhang W, Chen G, Zhi F, Zhang A, Deng H, et al. 2024. The impact of H2 and O2 enrichment on the laminar combustion characteristics of biomass syngas flame. International Journal of Hydrogen Energy 71:48−58.

doi: 10.1016/j.ijhydene.2024.05.242
[13]

Zhang Y, Wang C, Liang B, Si M, Xin Y, et al. 2025. Toward carbon-neutral combustion: synergistic CO2/H2O dilution for soot mitigation in oxy-fuel systems. International Journal of Hydrogen Energy 141:229−40

doi: 10.1016/j.ijhydene.2025.05.387
[14]

Zhang Y, Zhang W, Yu B, Li X, Zhang L, et al. 2024. Experimental and kinetic modeling study on laminar fame speeds and emission characteristics of oxy-ammonia premixed flames. Journal of Hydrogen Energy 63:857−70

doi: 10.1016/j.ijhydene.2024.03.042
[15]

Guo S, Wang J, Huang F, Liu D, Wang L, et al. 2025. Studies on the laminar burning properties of NH3/H2 blended fuel at different oxygen enrichment coefficient and hydrogen ratio. Journal of Hydrogen Energy 105:871−81

doi: 10.1016/j.ijhydene.2025.01.128
[16]

Pfau SA, La Rocca A, Haffner-Staton E, Fay MW, Cairns A. 2022. Linking operating conditions of a GDI engine to the nature and nanostructure of ultrafine soot particles. Combustion and Flame 245:112315

doi: 10.1016/j.combustflame.2022.112315
[17]

Wei J, Lu W, Zeng Y, Huang H, Pan M, et al. 2022. Physicochemical properties and oxidation reactivity of exhaust soot from a modern diesel engine: effect of oxyfuel type. Combustion and Flame 238:111940

doi: 10.1016/j.combustflame.2021.111940
[18]

Fuentes A, Henríquez R, Nmira F, Liu F, Consalvi JL. 2013. Consalvi J. Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames. Combustion and Flame 160:786−95

doi: 10.1016/j.combustflame.2012.12.005
[19]

Hua Y, Qiu L, Liu F, Qian Y, Meng S. 2020. Numerical investigation into the effects of oxygen concentration on flame characteristics and soot formation in diffusion and partially premixed flames. Fuel 268:117398

doi: 10.1016/j.fuel.2020.117398
[20]

Sahoo BB, Sahoo N, Saha UK. 2009. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines—a critical review. Rnewable and Sustainable Energy Reviews 13:1151−84

doi: 10.1016/j.rser.2008.08.003
[21]

Ramos da Costa YJ, Barbosa de Lima AG, Bezerra Filho CR, de Araujo Lima L. 2012. Energetic and exergetic analyses of a dual-fuel diesel engine. Renewable and Sustainable Energy Reviews 16:4651−60

doi: 10.1016/j.rser.2012.04.013
[22]

Wang H, Deneys Reitz R, Yao M, Yang B, Jiao Q, et al. 2013. Development of an n-heptane-n-butanol-PAH mechanism and its application for combustion and soot prediction. Combustion and Flame 160:504−19

doi: 10.1016/j.combustflame.2012.11.017
[23]

Wei J, Song C, Lv G, Song J, Wang L, et al. 2015. A comparative study of the physical properties of in-cylinder soot generated from the combustion of n-heptane and toluene/n-heptane in a diesel engine. Proceedings of the Combustion Institute 35:1939−46

doi: 10.1016/j.proci.2014.06.011
[24]

Ou J, Yang R, Yan Y, Liu J, Liu Z, et al. 2025. Chemical mechanism development for ammonia/n-heptane blends in dual fuel engines. Journal of the Energy Institute 120:102077

doi: 10.1016/j.joei.2025.102077
[25]

Wen M, Liu H, Cui Y, Ming Z, Wang W, et al. 2024. A study on optical diagnostics and numerical simulation of dual fuel combustion using ammonia and n-heptane. Energy 313:133977

doi: 10.1016/j.energy.2024.133977
[26]

Liu Z, Yuan C, Zhou L, Zhang X, Zhao W, et al. 2021. Effects of n-heptane concentration on ignition characteristics and flame propagation of dual fuel combustion under engine-like conditions. Fuel 294:120447

doi: 10.1016/j.fuel.2021.120447
[27]

Wang D, Yao J, Dong W, Rui Z, Pan W, et al. 2024. Numerical investigation of soot formation in methane/n-heptane laminar diffusion flame doped with hydrogen at elevated pressure. International Journal of Hydrogen Energy 79:1237−49

doi: 10.1016/j.ijhydene.2024.07.082
[28]

Eaves NA, Zhang Q, Liu F, Guo H, Dworkin SB, et al. 2016. CoFlame: a refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Computer Physics Communications 207:464−77

doi: 10.1016/j.cpc.2016.06.016
[29]

Wang D, Yan L, Yao J, Dong W, Chu H. 2025. Multi-scale exploration of the effects of fuel structure and hydrogen-doped on soot formation. Journal of the Energy Institute 120:102056

doi: 10.1016/j.joei.2025.102056
[30]

Consalvi JL, Liu F. 2015. Numerical study of the effects of pressure on soot formation in laminar coflow n-heptane/air diffusion flames between 1 and 10 atm. Proceedings of the Combustion Institute 35:1727−34

doi: 10.1016/j.proci.2014.07.045
[31]

Frenklach M, Wang H. 1991. Detailed modeling of soot particle nucleation and growth. Symposium (International) on Combustion 23:1559−66

doi: 10.1016/S0082-0784(06)80426-1
[32]

Xu H, Liu F, Sun S, Zhao Y, Meng S, et al. 2017. Effects of H2O and CO2 diluted oxidizer on the structure and shape of laminar coflow syngas diffusion flames. Combustion and Flame 177:67−78

doi: 10.1016/j.combustflame.2016.12.001