[1]

Bowell RJ, Alpers CN, Jamieson HE, Nordstrom DK, Majzlan J. 2014. The environmental geochemistry of arsenic - an overview. Reviews in Mineralogy and Geochemistry 79:1−16

doi: 10.2138/rmg.2014.79.1
[2]

Mukherjee A, Coomar P, Sarkar S, Johannesson KH, Fryar AE, et al. 2024. Arsenic and other geogenic contaminants in global groundwater. Nature Reviews Earth & Environment 5:312−28

doi: 10.1038/s43017-024-00519-z
[3]

Osuna-Martínez CC, Armienta MA, Bergés-Tiznado ME, Páez-Osuna F. 2021. Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review. Science of the Total Environment 752:142062

doi: 10.1016/j.scitotenv.2020.142062
[4]

Duan L, Song J, Yin M, Liu X, Liu X, et al. 2024. Hypoxia exacerbate the marine ecological risk of arsenic: By stimulating its migration and release at the sediment-water interface. Water Research 268:122603

doi: 10.1016/j.watres.2024.122603
[5]

Luo T, Sun Y, Liang W, Zheng Q, Kong S, et al. 2025. The alternation of flood and ebb tide induced arsenic release and migration from coastal tidal flat sediments in Yellow Sea wetlands: an ex-situ study. Journal of Cleaner Production 448:141730

doi: 10.1016/j.jclepro.2024.141730
[6]

Wallis I, Prommer H, Berg M, Siade AJ, Sun J, et al. 2020. The river–groundwater interface as a hotspot for arsenic release. Nature Geoscience 13:288−295

doi: 10.1038/s41561-020-0557-6
[7]

Barrett PM, Hull EA, Burkart K, Hargrave O, McLean J, et al. 2019. Contrasting arsenic cycling in strongly and weakly stratified contaminated lakes: Evidence for temperature control on sediment–water arsenic fluxes. Limnology and Oceanography 64:1333−1346

doi: 10.1002/lno.11119
[8]

Fan Y, Sun S, He S. 2023. Iron plaque formation and its effect on key elements cycling in constructed wetlands: Functions and outlooks. Water Research 235:119837

doi: 10.1016/j.watres.2023.119837
[9]

Li C, Ding S, Ma X, Wang Y, Sun Q, et al. 2023. Sediment arsenic remediation by submerged macrophytes via root-released O2 and microbe-mediated arsenic biotransformation. Journal of Hazardous materials 449:131006

doi: 10.1016/j.jhazmat.2023.131006
[10]

Maisch M, Lueder U, Kappler A, Schmidt C. 2019. Iron lung: how rice roots induce iron redox changes in the rhizosphere and create niches for microaerophilic Fe(II)-oxidizing bacteria. Environmental Science & Technology Letters 6:600−605

doi: 10.1021/acs.estlett.9b00403
[11]

Limmer MA, Evans AE, Seyfferth AL. 2021. A new method to capture the spatial and temporal heterogeneity of aquatic plant iron root plaque in situ. Environmental Science & Technology 55:912−918

doi: 10.1021/acs.est.0c02949
[12]

Fresno T, Peñalosa JM, Santner J, Puschenreiter M, Prohaska T, et al. 2016. Iron plaque formed under aerobic conditions efficiently immobilizes arsenic in Lupinus albus L roots. Environmental Pollution 216:215−222

doi: 10.1016/j.envpol.2016.05.071
[13]

Meng FL, Zhang X, Hu Y, Sheng GP. 2024. New barrier role of iron plaque: producing interfacial hydroxyl radicals to degrade rhizosphere pollutants. Environmental Science & Technology 58:795−804

doi: 10.1021/acs.est.3c08132
[14]

Zhang SY, Zhao FJ, Sun GX, Su JQ, Yang XR, et al. 2015. Diversity and abundance of arsenic biotransformation genes in paddy soils from Southern China. Environmental Science & Technology 49:4138−4146

doi: 10.1021/acs.est.5b00028
[15]

Phillips G, Willby N, Moss B. 2016. Submerged macrophyte decline in shallow lakes: What have we learnt in the last forty years? Aquatic Botany 135:37−45

doi: 10.1016/j.aquabot.2016.04.004
[16]

Luo J, Duan H, Xu Y, Shen M, Zhang Y, et al. 2025. Global trends and regime state shifts of lacustrine aquatic vegetation. The Innovation 6:100784

doi: 10.1016/j.xinn.2024.100784
[17]

Mueller CW, Baumert V, Carminati A, Germon A, Holz M, et al. 2024. From rhizosphere to detritusphere – Soil structure formation driven by plant roots and the interactions with soil biota. Soil Biology and Biochemistry 193:109396

doi: 10.1016/j.soilbio.2024.109396
[18]

Fang W, Williams PN, Zhang H, Yang Y, Yin D, et al. 2021. Combining multiple high-resolution in situ techniques to understand phosphorous availability around rice roots. Environmental Science & Technology 55:13082−13092

doi: 10.1021/acs.est.1c05358
[19]

Kappler A, Bryce C, Mansor M, Lueder U, Byrne JM, et al. 2021. An evolving view on biogeochemical cycling of iron. Nature Reviews Microbiology 19:360−374

doi: 10.1038/s41579-020-00502-7
[20]

Huang H, Zhu Y, Chen Z, Yin X, Sun G. 2012. Arsenic mobilization and speciation during iron plaque decomposition in a paddy soil. Journal of Soils and Sediments 12:402−410

doi: 10.1007/s11368-011-0461-1
[21]

Witzgall K, Steiner FA, Hesse BD, Riveras-Muñoz N, Rodríguez V, et al. 2024. Living and decaying roots as regulators of soil aggregation and organic matter formation—from the rhizosphere to the detritusphere. Soil Biology and Biochemistry 197:109503

doi: 10.1016/j.soilbio.2024.109503
[22]

Zhang Y, Jeppesen E, Liu X, Qin B, Shi K, et al. 2017. Global loss of aquatic vegetation in lakes. Earth-Science Reviews 173:259−265

doi: 10.1016/j.earscirev.2017.08.013
[23]

Kuzyakov Y, Razavi BS. 2019. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biology and Biochemistry 135:343−360

doi: 10.1016/j.soilbio.2019.05.011
[24]

Lippold E, Schlüter S, Mueller CW, Höschen C, Harrington G, et al. 2023. Correlative imaging of the rhizosphere horizontal line: a multimethod workflow for targeted mapping of chemical gradients. Environmental Science & Technology 57:1538−1549

doi: 10.1021/acs.est.2c07340
[25]

Cui J, Wang Y, Ding S, Chen M, Li D, et al. 2024. High-resolution diurnal variation mechanism of oxygen and acid environments at the water–sediment interface during cyanobacterial decomposition. Journal of Cleaner Production 435:140605

doi: 10.1016/j.jclepro.2024.140605
[26]

Tang N, Huang W, Li X, Gao X, Liu X, et al. 2024. Drilling into the physiology, transcriptomics, and metabolomics to enhance insight on Vallisneria denseserrulata responses to nanoplastics and metalloid co-stress. Journal of Cleaner Production 448:141730

doi: 10.1016/j.jclepro.2024.141653
[27]

Zhang Q, Dong X, Yang X, Liu E, Lin Q, et al. 2022. Aquatic macrophyte fluctuations since the 1900s in the third largest Chinese freshwater lake (Lake Taihu): evidences, drivers and management implications. CATENA 213:106153

doi: 10.1016/j.catena.2022.106153
[28]

Li C, Ding S, Yang L, Wang Y, Ren M, et al. 2019. Diffusive gradients in thin films: devices, materials and applications. Environmental Chemistry Letters 17:801−31

doi: 10.1007/s10311-018-00839-9
[29]

Ma X, Song Y, Shen Y, Yang L, Ding S, et al. 2024. Fine-scale measurements unravel the side effects of biochar capping on the bioavailability and mobility of phosphorus in sediments. Biochar 6:49

doi: 10.1007/s42773-024-00343-0
[30]

Li C, Ding S, Yang L, Zhu Q, Chen M, et al. 2019. Planar optode: a two-dimensional imaging technique for studying spatial-temporal dynamics of solutes in sediment and soil. Earth-Science Reviews 197:102916

doi: 10.1016/j.earscirev.2019.102916
[31]

Li C, Ding S, Chen M, Zhong Z, Sun Q, et al. 2023. Visualizing biogeochemical heterogeneity in soils and sediments: a review of advanced micro-scale sampling and imaging methods. Critical Reviews in Environmental Science and Technology 53:1229−1253

doi: 10.1080/10643389.2022.2128239
[32]

Guan DX, He SX, Li G, Teng HH, Ma LQ. 2022. Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils. Critical Reviews in Environmental Science and Technology 52:3035−3079

doi: 10.1080/10643389.2021.1900765
[33]

Ren M, Ding S, Dai Z, Wang J, Li C, et al. 2021. A new DGT technique comprising a hybrid sensor for the simultaneous high resolution 2-D imaging of sulfides, metallic cations, oxyanions and dissolved oxygen. Journal of Hazardous Materials 403:123597

doi: 10.1016/j.jhazmat.2020.123597
[34]

Smolders E, Wagner S, Prohaska T, Irrgeher J, Santner J. 2020. Sub-millimeter distribution of labile trace element fluxes in the rhizosphere explains differential effects of soil liming on cadmium and zinc uptake in maize. Science of the Total Environment 738:140311

doi: 10.1016/j.scitotenv.2020.140311
[35]

Notini L, Schulz K, Kubeneck LJ, Grigg ARC, Rothwell KA, et al. 2023. A new approach for investigating iron mineral transformations in soils and sediments using 57Fe-labeled minerals and 57Fe Mössbauer spectroscopy. Environmental Science & Technology 57:10008−10018

doi: 10.1021/acs.est.3c00434
[36]

Wang D, Zhu MX, Yang GP, Ma WW. 2019. Reactive iron and iron-bound organic carbon in surface sediments of the river-dominated Bohai Sea (China) versus the Southern Yellow Sea. Journal of Geophysical Research: Biogeosciences 124:79−98

doi: 10.1029/2018JG004722
[37]

Wan X, Dong H, Feng L, Lin Z, Luo Q. 2017. Comparison of three sequential extraction procedures for arsenic fractionation in highly polluted sites. Chemosphere 178:402−410

doi: 10.1016/j.chemosphere.2017.03.078
[38]

Wang S, Ding S, Zhao H, Chen M, Yang D, et al. 2024. Seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic in sediments of Lake Taihu, China. Journal of Hazardous Materials 463:132852

doi: 10.1016/j.jhazmat.2023.132852
[39]

Larsen M, Santner J, Oburger E, Wenzel WW, Glud RN. 2015. O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L. ) as studied by planar optodes. Plant and Soil 390:279−292

doi: 10.1007/s11104-015-2382-z
[40]

Santner J, Larsen M, Kreuzeder A, Glud RN. 2015. Two decades of chemical imaging of solutes in sediments and soils − a review. Analytica Chimica Acta 878:9−42

doi: 10.1016/j.aca.2015.02.006
[41]

Han C, Ren J, Tang H, Xu D, Xie X. 2016. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode. Science of the Total Environment 569−570:1232−1240

doi: 10.1016/j.scitotenv.2016.06.198
[42]

Schulz K, Wisawapipat W, Barmettler K, Grigg ARC, Kubeneck LJ, et al. 2024. Iron Oxyhydroxide Transformation in a Flooded Rice Paddy Field and the Effect of Adsorbed Phosphate. Environmental Science & Technology 58:10601−10610

doi: 10.1021/acs.est.4c01519
[43]

Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T. 2014. Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environmental Science & Technology 48:1549−1556

doi: 10.1021/es402739a
[44]

Meng D, Nabi F, Kama R, Li S, Wang W, et al. 2024. The interaction between ferrihydrite and arsenic: a review of environmental behavior, mechanism and applied in remediation. Journal of Hazardous Materials Advances 13:100398

doi: 10.1016/j.hazadv.2023.100398
[45]

Xing X, Ding S, Liu L, Chen M, Yan W, et al. 2018. Direct evidence for the enhanced acquisition of phosphorus in the rhizosphere of aquatic plants: a case study on Vallisneria natans. Science of the Total Environment 616−617:386−396

doi: 10.1016/j.scitotenv.2017.10.304
[46]

Zhou M, Liu Z, Zhang B, Yang J, Hu B. 2022. Interaction between arsenic metabolism genes and arsenic leads to a lose-lose situation. Environmental Pollution 312:119971

doi: 10.1016/j.envpol.2022.119971
[47]

Zhu YG, Xue XM, Kappler A, Rosen BP, Meharg AA. 2017. Linking genes to microbial biogeochemical cycling: lessons from arsenic. Environmental Science & Technology 51:7326−7339

doi: 10.1021/acs.est.7b00689
[48]

Zhong Z, Li C, Chen M, Zhao H, Fan X, et al. 2023. The root tip of submerged plants: an efficient engine for carbon mineralization. Environmental Science and Technology Letters 10:385−390

doi: 10.1021/acs.estlett.3c00065
[49]

Yao J, Qin S, Liu T, Clough TJ, Wrage-Mönnig N, et al. 2022. Rice root Fe plaque enhances oxidation of microbially available organic carbon via Fe(III) reduction-coupled microbial respiration. Soil Biology and Biochemistry 167:108568

doi: 10.1016/j.soilbio.2022.108568
[50]

Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL. 2015. Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends in Plant Science 20:83−90

doi: 10.1016/j.tplants.2014.10.007
[51]

Wagner S, Hoefer C, Puschenreiter M, Wenzel WW, Oburger E, et al. 2020. Arsenic redox transformations and cycling in the rhizosphere of Pteris vittata and Pteris quadriaurita. Environmental and Experimental Botany 177:104122

doi: 10.1016/j.envexpbot.2020.104122
[52]

Teixeira PPC, Vidal A, Teixeira APM, Souza IF, Hurtarte LCC, et al. 2024. Decoding the rhizodeposit-derived carbon's journey into soil organic matter. Geoderma 443:116811

doi: 10.1016/j.geoderma.2024.116811
[53]

Patzner MS, Logan M, McKenna AM, Young RB, Zhou Z, et al. 2022. Microbial iron cycling during palsa hillslope collapse promotes greenhouse gas emissions before complete permafrost thaw. Communications Earth & Environment 3:76

doi: 10.1038/s43247-022-00407-8
[54]

Maisch M, Lueder U, Kappler A, Schmidt C. 2020. From plant to paddy—how rice root iron plaque can affect the paddy field iron cycling. Soil Systems 4:28

doi: 10.3390/soilsystems4020028
[55]

Qiao J, Liu J, Palomo A, Bostick BC, Phan K, et al. 2023. Prevalence of methylated arsenic and microbial arsenic methylation genes in paddy soils of the Mekong Delta. Environmental Science & Technology 57:9675−9682

doi: 10.1021/acs.est.3c00210
[56]

Yu H, Lu Q, Cao X, Wang Y, Xu Y, et al. 2024. Habitat disturbance drives the feedback of aquatic plants on the microbial community after lake degradation. ACS ES&T Water 4:3509−3520

doi: 10.1021/acsestwater.4c00330
[57]

Tang Y, Zhang M, Zhang J, Lyu T, Cooper M, et al. 2021. Reducing arsenic toxicity using the interfacial oxygen nanobubble technology for sediment remediation. Water Research 205:117657

doi: 10.1016/j.watres.2021.117657
[58]

Jiang X, Gong Y, Xiong J, Ren B, Qiu Y, et al. 2025. Reducing arsenic mobilization in sediments: a synergistic effect of oxidation and adsorption with zirconium-manganese binary metal oxides. Water Research 283:123798

doi: 10.1016/j.watres.2025.123798