[1]

Yu C, Huang X, Chen H, Godfray HCJ, Wright JS, et al. 2019. Managing nitrogen to restore water quality in China. Nature 567:516−520

doi: 10.1038/s41586-019-1001-1
[2]

Yan X, Xia Y, Zhao X, Ti C, Xia L, et al. 2025. Coupling nitrogen removal and watershed management to improve global lake water quality. Nature Communications 16:2182

doi: 10.1038/s41467-025-57442-0
[3]

Deakin J, Flynn R, Archbold M, Daly D, O'Brien R, et al. 2016. Understanding pathways transferring nutrients to streams: review of a major Irish study and its implications for determining water quality management strategies. Biology and Environment: Proceedings of the Royal Irish Academy 116:233−243

doi: 10.1353/bae.2016.0022
[4]

Basu NB, Van Meter KJ, Byrnes DK, Van Cappellen P, Brouwer R, et al. 2022. Managing nitrogen legacies to accelerate water quality improvement. Nature Geoscience 15:97−105

doi: 10.1038/s41561-021-00889-9
[5]

Xia Y, Ti C, She D, Yan X. 2016. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China. Science of the Total Environment 566−567:1094−1105

doi: 10.1016/j.scitotenv.2016.05.134
[6]

Mihiranga HKM, Jiang Y, Li X, Wang W, De Silva K, et al. 2021. Nitrogen/phosphorus behavior traits and implications during storm events in a semi-arid mountainous watershed. Science of the Total Environment 791:148382

doi: 10.1016/j.scitotenv.2021.148382
[7]

Huang X, Zhu Y, Lin H, She D, Li P, et al. 2024. High-frequency monitoring during rainstorm events reveals nitrogen sources and transport in a rural catchment. Journal of Environmental Management 362:121308

doi: 10.1016/j.jenvman.2024.121308
[8]

Delesantro JM, Duncan JM, Riveros-Iregui D, Whitmore KM, Band LE. 2024. High frequency monitoring and nitrate sourcing reveals baseflow and stormflow controls on total dissolved nitrogen and carbon export along a rural-urban gradient. Water Resources Research 60:e2023WR036750

doi: 10.1029/2023WR036750
[9]

Zarnaghsh A, Husic A. 2021. Degree of Anthropogenic Land Disturbance Controls Fluvial Sediment Hysteresis. Environmental Science & Technology 55:13737−13748

doi: 10.1021/acs.est.1c00740
[10]

Yan X, Cai Z, Yang R, Ti C, Xia Y, et al. 2011. Nitrogen budget and riverine nitrogen output in a rice paddy dominated agricultural watershed in eastern China. Biogeochemistry 106:489−501

doi: 10.1007/s10533-010-9528-0
[11]

Ilampooranan I, Van Meter KJ, Basu NB. 2022. Intensive agriculture, nitrogen legacies, and water quality: Intersections and implications. Environmental Research Letters 17:035006

doi: 10.1088/1748-9326/ac55b5
[12]

Ruffatti MD, Roth RT, Lacey CG, Armstrong SD. 2019. Impacts of nitrogen application timing and cover crop inclusion on subsurface drainage water quality. Agricultural Water Management 211:81−88

doi: 10.1016/j.agwat.2018.09.016
[13]

Liu W, Tian S, Youssef MA, Birgand FP, Chescheir GM. 2022. Patterns of long-term variations of nitrate concentration–stream discharge relationships for a drained agricultural watershed in Mid-western USA. Journal of Hydrology 614:128479

doi: 10.1016/j.jhydrol.2022.128479
[14]

Divers MT, Elliott EM, Bain DJ. 2013. Constraining nitrogen inputs to urban streams from leaking sewers using inverse modeling: implications for dissolved inorganic nitrogen (DIN) retention in urban environments. Environmental Science & Technology 47:1816−1823

doi: 10.1021/es304331m
[15]

Hobbie SE, Finlay JC, Janke BD, Nidzgorski DA, Millet DB, et al. 2017. Contrasting nitrogen and phosphorus budgets in urban watersheds and implications for managing urban water pollution. Proceedings of the National Academy of Sciences 114:4177−4182

doi: 10.1073/pnas.1618536114
[16]

Eckhardt K. 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes 19:507−515

doi: 10.1002/hyp.5675
[17]

Wang J, Li X, Li Y, Shi Y, Xiao H, et al. 2024. Transport pathways of nitrate in stormwater runoff inferred from high-frequency sampling and stable water isotopes. Environmental Science & Technology 58:17026−17035

doi: 10.1021/acs.est.4c02495
[18]

Xia Y, Li Y, Zhang X, Yan X. 2017. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems. Journal of Geophysical Research: Biogeosciences 122:2−14

doi: 10.1002/2016JG003447
[19]

Zhu Y, Chen L, Wang K, Wang W, Wang C, et al. 2019. Evaluating the spatial scaling effect of baseflow and baseflow nonpoint source pollution in a nested watershed. Journal of Hydrology 579:124221

doi: 10.1016/j.jhydrol.2019.124221
[20]

Miller MP, Tesoriero AJ, Hood K, Terziotti S, Wolock DM. 2017. Estimating discharge and nonpoint source nitrate loading to streams from three end-member pathways using high-frequency water quality data. Water Resources Research 53:10201−10216

doi: 10.1002/2017WR021654
[21]

Runkel RL, Crawford CG, Cohn TA. 2004. Load Estimator (LOADEST): A FORTRAN program for estimating constituent loads in streams and rivers. Techniques and Methods 4-A5. Reston, VA: U.S. Geological Survey. doi: 10.3133/tm4A5

[22]

He S, Yu K, Tang Z, Yan Y, Zhang F. 2022. Impacts of parameter uncertainty on baseflow separation by a two-parameter recursive digital filter. Hydrological Processes 36:e14512

doi: 10.1002/hyp.14512
[23]

Xie H, Shang M, Dong J, Li Y, Wan N, et al. 2025. Antibiotic transport requires a renewed focus on baseflow as a critical non-point source pathway. Environmental Pollution 375:126355

doi: 10.1016/j.envpol.2025.126355
[24]

Godsey SE, Kirchner JW, Clow DW. 2009. Concentration-discharge relationships reflect chemostatic characteristics of US catchments. Hydrological Processes 23:1844−1864

doi: 10.1002/hyp.7315
[25]

R Core Team. 2025. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. www.R-project.org

[26]

Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology 20:257−269

doi: 10.1038/s41579-021-00649-x
[27]

Delesantro JM, Duncan JM, Riveros-Iregui D, Blaszczak JR, Bernhardt ES, et al. 2022. The nonpoint sources and transport of baseflow nitrogen loading across a developed rural-urban gradient. Water Resources Research 58:e2021WR031533

doi: 10.1029/2021WR031533
[28]

Tong X, Mohapatra S, Zhang J, Tran NH, You L, et al. 2022. Source, fate, transport and modelling of selected emerging contaminants in the aquatic environment: current status and future perspectives. Water Research 217:118418

doi: 10.1016/j.watres.2022.118418
[29]

Li X, Yan X, Han H, Luo G, Yan X, et al. 2024. The trade-off effects of water flow velocity on denitrification rates in open channel waterways. Journal of Hydrology 637:131374

doi: 10.1016/j.jhydrol.2024.131374
[30]

Harrison JA, Bouwman AF, Mayorga E, Seitzinger S. 2010. Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: a new global model. Global Biogeochemical Cycles 24:GB1003

doi: 10.1029/2009GB003590
[31]

Han H, Yan X, Xie H, Qiu J, Li X, et al. 2023. Incorporating a new landscape intensity indicator into landscape metrics to better understand controls of water quality and optimal width of riparian buffer zone. Journal of Hydrology 625:130088

doi: 10.1016/j.jhydrol.2023.130088
[32]

Kaushal SS, Groffman PM, Band LE, Elliott EM, Shields CA, et al. 2011. Tracking nonpoint source nitrogen pollution in human-impacted watersheds. Environmental Science & Technology 45:8225−8232

doi: 10.1021/es200779e
[33]

Husic A, Fox J, Mahoney T, Gerlitz M, Pollock E, et al. 2020. Optimal transport for assessing nitrate source-pathway connectivity. Water Resources Research 56:e2020WR027446

doi: 10.1029/2020WR027446
[34]

Zhu Q, Schmidt JP, Buda AR, Bryant RB, Folmar GJ. 2011. Nitrogen loss from a mixed land use watershed as influenced by hydrology and seasons. Journal of Hydrology 405:307−315

doi: 10.1016/j.jhydrol.2011.05.028
[35]

Shang J, Zhang W, Li Y, Zheng J, Ma X, et al. 2023. How nutrient loading leads to alternative stable states in microbially mediated N-cycle pathways: A new insight into bioavailable nitrogen removal in urban rivers. Water Research 236:119938

doi: 10.1016/j.watres.2023.119938