[1]

Forster P, Storelvmo T, Armour K, Collins W, Dufresne JL, et al. 2021. The earth's energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: the Physical Science Basis. Contribution of Working Group I 40 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. UK, USA: Cambridge University Press. pp. 923−1054 doi: 10.1017/9781009157896

[2]

Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326:123−125

doi: 10.1126/science.1176985
[3]

Harris E, Diaz-Pines E, Stoll E, Schloter M, Schulz S, et al. 2021. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. Science Advances 7:eabb7118

doi: 10.1126/sciadv.abb7118
[4]

Ostrom NE, Sutka R, Ostrom PH, Grandy AS, Huizinga KM, et al. 2010. Isotopologue data reveal bacterial denitrification as the primary source of N2O during a high flux event following cultivation of a native temperate grassland. Soil Biology and Biochemistry 42:499−506

doi: 10.1016/j.soilbio.2009.12.003
[5]

Kang L, Han X, Zhang Z, Sun OJ. 2007. Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences 362:997−1008

doi: 10.1098/rstb.2007.2029
[6]

Spohn M, Bagchi S, Bakker JD, Borer ET, Carbutt C, et al. 2025. Interactive and unimodal relationships between plant biomass, abiotic factors, and plant diversity in global grasslands. Communications Biology 8:97

doi: 10.1038/s42003-025-07518-w
[7]

Chen GX, Huang B, Xu H, Zhang Y, Huang GH, et al. 2000. Nitrous oxide emissions from terrestrial ecosystems in China. Chemosphere-Global Change Science 2:373−378

doi: 10.1016/S1465-9972(00)00036-2
[8]

Peng Q, Qi Y, Yin F, Guo Y, Dong Y, et al. 2024. The seasonal response of N2O emissions to increasing precipitation and nitrogen deposition and its driving factors in temperate semi-arid grassland. Agronomy 14:1153

doi: 10.3390/agronomy14061153
[9]

Yin M, Gao X, Kuang W, Tenuta M. 2023. Soil N2O emissions and functional genes in response to grazing grassland with livestock: a meta-analysis. Geoderma 436:116538

doi: 10.1016/j.geoderma.2023.116538
[10]

Yin M, Gao X, Tenuta M, Li L, Gui D, et al. 2020. Enhancement of N2O emissions by grazing is related to soil physicochemical characteristics rather than nitrifier and denitrifier abundances in alpine grassland. Geoderma 375:114511

doi: 10.1016/j.geoderma.2020.114511
[11]

Zhang J, He P, Liu Y, Du W, Jing H, et al. 2021. Soil properties and microbial abundance explain variations in N2O fluxes from temperate steppe soil treated with nitrogen and water in Inner Mongolia, China. Applied Soil Ecology 165:103984

doi: 10.1016/j.apsoil.2021.103984
[12]

Zhong L, Zhou X, Wang Y, Li FY, Zhou S, et al. 2017. Mixed grazing and clipping is beneficial to ecosystem recovery but may increase potential N2O emissions in a semi-arid grassland. Soil Biology and Biochemistry 114:42−51

doi: 10.1016/j.soilbio.2017.07.002
[13]

Pan B, Xia L, Lam SK, Wang E, Zhang Y, et al. 2022. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems & Environment 327:107850

doi: 10.1016/j.agee.2021.107850
[14]

Tong Y, Dong Q, Yu Y, Cao Q, Yang X, et al. 2024. Nitrogen application increases the productivity of perennial alpine cultivated grassland by improving soil physicochemical properties and microbial community characteristics. Plant and Soil 505:559−579

doi: 10.1007/s11104-024-06694-8
[15]

Mosier A, Schimel D, Valentine D, Bronson K, Parton W. 1991. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature 350:330−332

doi: 10.1038/350330a0
[16]

Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, et al. 2010. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications 20:30−59

doi: 10.1890/08-1140.1
[17]

Geng F, Li K, Liu X, Gong Y, Yue P, et al. 2019. Long-term effects of N deposition on N2O emission in an alpine grassland of Central Asia. CATENA 182:104100

doi: 10.1016/j.catena.2019.104100
[18]

Zhang B, Yu L, Wang J, Tang H, Qu Z, et al. 2022. Effects of warming and nitrogen input on soil N2O emission from Qinghai-Tibetan Plateau: a synthesis. Agricultural and Forest Meteorology 326:109167

doi: 10.1016/j.agrformet.2022.109167
[19]

Zhang B, Zhou M, Zhu B, Xiao Q, Wang T, et al. 2021. Soil type affects not only magnitude but also thermal sensitivity of N2O emissions in subtropical mountain area. Science of the Total Environment 797:149127

doi: 10.1016/j.scitotenv.2021.149127
[20]

Lu Z, Du R, Du P, Li Z, Liang Z, et al. 2015. Effect of mowing on N2O and CH4 fluxes emissions from the meadow-steppe grasslands of Inner Mongolia. Frontiers of Earth Science 9:473−486

doi: 10.1007/s11707-014-0486-z
[21]

Du Y, Ke X, Li J, Wang Y, Cao G, et al. 2021. Nitrogen deposition increases global grassland N2O emission rates steeply: a meta-analysis. CATENA 199:105105

doi: 10.1016/j.catena.2020.105105
[22]

Wei D, Xu R, Liu Y, Wang Y, Wang Y. 2014. Three-year study of CO2 efflux and CH4/N2O fluxes at an alpine steppe site on the central Tibetan Plateau and their responses to simulated N deposition. Geoderma 232-234:88−96

doi: 10.1016/j.geoderma.2014.05.002
[23]

Wan Z, Gu R, Ganjurjav H, Hu G, Gao Q, et al. 2024. The stability of aboveground productivity in a semiarid steppe in China is influenced by the plant community structure. Communications Earth & Environment 5:523

doi: 10.1038/s43247-024-01702-2
[24]

Xu L, Cao H, Li C, Wang C, He N, et al. 2022. The importance of rare versus abundant phoD-harboring subcommunities in driving soil alkaline phosphatase activity and available P content in Chinese steppe ecosystems. Soil Biology and Biochemistry 164:108491

doi: 10.1016/j.soilbio.2021.108491
[25]

Dorich RA, Nelson DW. 1983. Direct colorimetric measurement of ammonium in potassium chloride extracts of soils. Soil Science Society of America Journal 47:833−836

doi: 10.2136/sssaj1983.03615995004700040042x
[26]

Norman RJ, Edberg JC, Stucki JW. 1985. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Science Society of America Journal 49:1182−1185

doi: 10.2136/sssaj1985.03615995004900050022x
[27]

Norman RJ, Stucki JW. 1981. The determination of nitrate and nitrite in soil extracts by ultraviolet spectrophotometry. Soil Science Society of America Journal 45:347−353

doi: 10.2136/sssaj1981.03615995004500020024x
[28]

Molstad L, Dörsch P, Bakken LR. 2007. Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. Journal of Microbiological Methods 71:202−211

doi: 10.1016/j.mimet.2007.08.011
[29]

Chen Q, Han F, Lyu M, Zeng Z, Cai Y, et al. 2025. Distinct responses of fungal and bacterial denitrification genes to seasonal changes, nitrogen deposition and precipitation reduction in subtropical forest soils. Applied Soil Ecology 213:106322

doi: 10.1016/j.apsoil.2025.106322
[30]

Lun J, Zhou W, Sun M, Li N, Shi W, et al. 2024. Meta-analysis: Global patterns and drivers of denitrification, anammox and DNRA rates in wetland and marine ecosystems. Science of the Total Environment 954:176694

doi: 10.1016/j.scitotenv.2024.176694
[31]

Hoben JP, Gehl RJ, Millar N, Grace PR, Robertson GP. 2011. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Global Change Biology 17:1140−1152

doi: 10.1111/j.1365-2486.2010.02349.x
[32]

Peng Y, Wang G, Li F, Zhou G, Yang G, et al. 2018. Soil temperature dynamics modulate N2O flux Response to multiple nitrogen additions in an alpine steppe. Journal of Geophysical Research: Biogeosciences 123:3308−19

doi: 10.1029/2018JG004488
[33]

Liu Y, Xu-Ri, Xu X, Wei D, Wang Y, et al. 2013. Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition. Plant and Soil 373:515−529

doi: 10.1007/s11104-013-1814-x
[34]

Ullah S, Raza MM, Abbas T, Guan X, Zhou W, et al. 2023. Responses of soil microbial communities and enzyme activities under nitrogen addition in fluvo-aquic and black soil of North China. Frontiers in Microbiology 14:1249471

doi: 10.3389/fmicb.2023.1249471
[35]

Wang X, Feng J, Ao G, Qin W, Han M, et al. 2023. Globally nitrogen addition alters soil microbial community structure, but has minor effects on soil microbial diversity and richness. Soil Biology and Biochemistry 179:108982

doi: 10.1016/j.soilbio.2023.108982
[36]

Long XE, Shen JP, Wang JT, Zhang LM, Di H, et al. 2017. Contrasting response of two grassland soils to N addition and moisture levels: N2O emission and functional gene abundance. Journal of Soils and Sediments 17:384−392

doi: 10.1007/s11368-016-1559-2
[37]

Wei C, Su F, Yue H, Song F, Li H. 2024. Spatial distribution characteristics of denitrification functional genes and the environmental drivers in Liaohe estuary wetland. Environmental Science and Pollution Research 31:1064−1078

doi: 10.1007/s11356-023-30938-2
[38]

Yang Y, Liu H, Lv J. 2022. Response of N2O emission and denitrification genes to different inorganic and organic amendments. Scientific Reports 12:3940

doi: 10.1038/s41598-022-07753-9
[39]

Zheng S, Bian H, Quan Q, Xu L, Chen Z, et al. 2018. Effect of nitrogen and acid deposition on soil respiration in a temperate forest in China. Geoderma 329:82−90

doi: 10.1016/j.geoderma.2018.05.022
[40]

Araya YN, Gowing DJ, Dise N. 2013. Does soil nitrogen availability mediate the response of grassland composition to water regime? Journal of Vegetation Science 24:506−517

doi: 10.1111/j.1654-1103.2012.01481.x
[41]

She W, Bai Y, Zhang Y, Qin S, Feng W, et al. 2018. Resource availability drives responses of soil microbial communities to short-term precipitation and nitrogen addition in a desert shrubland. Frontiers in Microbiology 9:186

doi: 10.3389/fmicb.2018.00186
[42]

Wang Z, Na R, Koziol L, Schellenberg MP, Li X, et al. 2020. Response of bacterial communities and plant-mediated soil processes to nitrogen deposition and precipitation in a desert steppe. Plant and Soil 448:277−297

doi: 10.1007/s11104-020-04424-4
[43]

Liu X, Zhang Q, Li S, Zhang L, Ren J. 2017. Simulated NH4+-N deposition inhibits CH4 uptake and promotes N2O emission in the meadow steppe of Inner Mongolia, China. Pedosphere 27:306−317

doi: 10.1016/S1002-0160(17)60318-7
[44]

Jones SK, Rees RM, Skiba UM, Ball BC. 2007. Influence of organic and mineral N fertiliser on N2O fluxes from a temperate grassland. Agriculture, Ecosystems & Environment 121:74−83

doi: 10.1016/j.agee.2006.12.006
[45]

Ye J, Mark Jensen M, Goonesekera EM, Yu R, Smets BF, et al. 2024. Denitrifying communities enriched with mixed nitrogen oxides preferentially reduce N2O under conditions of electron competition in wastewater. Chemical Engineering Journal 498:155292

doi: 10.1016/j.cej.2024.155292
[46]

Li Z, Tang Z, Song Z, Chen W, Tian D, et al. 2022. Variations and controlling factors of soil denitrification rate. Global Change Biology 28:2133−2145

doi: 10.1111/gcb.16066
[47]

Yin Y, Wang Z, Tian X, Wang Y, Cong J, et al. 2022. Evaluation of variation in background nitrous oxide emissions: A new global synthesis integrating the impacts of climate, soil, and management conditions. Global Change Biology 28:480−492

doi: 10.1111/gcb.15860
[48]

Liao J, Luo Q, Hu A, Wan W, Tian D, et al. 2022. Soil moisture–atmosphere feedback dominates land N2O nitrification emissions and denitrification reduction. Global Change Biology 28:6404−6418

doi: 10.1111/gcb.16365
[49]

Bleken MA, Rittl TF. 2022. Soil pH-increase strongly mitigated N2O emissions following ploughing of grass and clover swards in autumn: a winter field study. Science of the Total Environment 828:154059

doi: 10.1016/j.scitotenv.2022.154059
[50]

Žurovec O, Wall DP, Brennan FP, Krol DJ, Forrestal PJ, et al. 2021. Increasing soil pH reduces fertiliser derived N2O emissions in intensively managed temperate grassland. Agriculture, Ecosystems & Environment 311:107319

doi: 10.1016/j.agee.2021.107319
[51]

Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, et al. 2018. The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2O production. Environmental Microbiology 20:1623−1640

doi: 10.1111/1462-2920.14063
[52]

You L, Ros GH, Chen Y, Yang X, Cui Z, et al. 2022. Global meta-analysis of terrestrial nitrous oxide emissions and associated functional genes under nitrogen addition. Soil Biology and Biochemistry 165:108523

doi: 10.1016/j.soilbio.2021.108523
[53]

Kou Y, Li C, Li J, Tu B, Wang Y, et al. 2019. Climate and soil parameters are more important than denitrifier abundances in controlling potential denitrification rates in Chinese grassland soils. Science of the Total Environment 669:62−69

doi: 10.1016/j.scitotenv.2019.03.093