[1]

He PC, He C. 2021. m6A RNA methylation: from mechanisms to therapeutic potential. The EMBO Journal 40:e105977

doi: 10.15252/embj.2020105977
[2]

Jiang X, Liu B, Nie Z, Duan L, Xiong Q, et al. 2021. The role of m6A modification in the biological functions and diseases. Signal Transduction and Targeted Therapy 6(1):74

doi: 10.1038/s41392-020-00450-x
[3]

Dunn DB, Smith JD. 1955. Occurrence of a new base in the deoxyribonucleic acid of a strain of bacterium coli. Nature 175:336−37

doi: 10.1038/175336a0
[4]

Desrosiers R, Friderici K, Rottman F. 1974. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proceedings of the National Academy of Sciences of the United States of America 71(10):3971−75

doi: 10.1073/pnas.71.10.3971
[5]

Perry RP, Kelley DE. 1974. Existence of methylated messenger RNA in mouse L cells. Cell 1(1):37−42

doi: 10.1016/0092-8674(74)90153-6
[6]

Chen J, Zhang YC, Huang C, Shen H, Sun B, et al. 2019. m6A regulates neurogenesis and neuronal development by modulating histone methyltransferase Ezh2. Genomics, Proteomics & Bioinformatics 17(2):154−68

doi: 10.1016/j.gpb.2018.12.007
[7]

Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, et al. 2019. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nature Methods 16:1297−305

doi: 10.1038/s41592-019-0617-2
[8]

Zhang Z, Chen LQ, Zhao YL, Yang CG, Roundtree IA, et al. 2019. Single-base mapping of m6A by an antibody-independent method. Science Advances 5(7):eaax0250

doi: 10.1126/sciadv.aax0250
[9]

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, et al. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201−6

doi: 10.1038/nature11112
[10]

Liu Y, Yang D, Liu T, Chen J, Yu J, et al. 2023. N6-methyladenosine-mediated gene regulation and therapeutic implications. Trends in Molecular Medicine 29(6):454−67

doi: 10.1016/j.molmed.2023.03.005
[11]

Shi H, Wei J, He C. 2019. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Molecular Cell 74(4):640−50

doi: 10.1016/j.molcel.2019.04.025
[12]

Chen K, Luo G-Z, He C. 2015. Chapter nine-high-resolution mapping of N6-methyladenosine in transcriptome and genome using a photo-crosslinking-assisted strategy. Methods in Enzymology 560:161−85

doi: 10.1016/bs.mie.2015.03.012
[13]

Fu Y, Dominissini D, Rechavi G, He C. 2014. Gene expression regulation mediated through reversible m6A RNA methylation. Nature Reviews Genetics 15:293−306

doi: 10.1038/nrg3724
[14]

Jiang C, Li P, Ma Y, Yoneda N, Kawai K, et al. 2024. Comprehensive gene profiling of the metabolic landscape of humanized livers in mice. Journal of Hepatology 80:622−33

doi: 10.1016/j.jhep.2023.11.020
[15]

Yang Y, Hsu PJ, Chen YS, Yang YG. 2018. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Research 28:616−24

doi: 10.1038/s41422-018-0040-8
[16]

Patil DP, Chen CK, Pickering BF, Chow A, Jackson C, et al. 2016. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537:369−73

doi: 10.1038/nature19342
[17]

Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. 1997. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3(11):1233−47

[18]

Liu J, Yue Y, Han D, Wang X, Fu Y, et al. 2014. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nature Chemical Biology 10:93−95

doi: 10.1038/nchembio.1432
[19]

Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, et al. 2014. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5′ sites. Cell Reports 8(1):284−96

doi: 10.1016/j.celrep.2014.05.048
[20]

Liu C, Fan D, Sun J, Li G, Du R, et al. 2025. Inhibition of METTL14 overcomes CDK4/6 inhibitor resistance driven by METTL14-m6A-E2F1-axis in ERα-positive breast cancer. Journal of Nanobiotechnology 23:3

doi: 10.1186/s12951-024-03021-2
[21]

Patil DP, Pickering BF, Jaffrey SR. 2018. Reading m6A in the transcriptome: m6A-binding proteins. Trends in Cell Biology 28:113−27

doi: 10.1016/j.tcb.2017.10.001
[22]

Shi H, Chai P, Jia R, Fan X. 2020. Novel insight into the regulatory roles of diverse RNA modifications: re-defining the bridge between transcription and translation. Molecular Cancer 19:78

doi: 10.1186/s12943-020-01194-6
[23]

Mo L, Meng L, Huang Z, Yi L, Yang N, et al. 2022. An analysis of the role of HnRNP C dysregulation in cancers. Biomarker Research 10:19

doi: 10.1186/s40364-022-00366-4
[24]

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, et al. 2015. 5' UTR m6A promotes cap-independent translation. Cell 163(4):999−1010

doi: 10.1016/j.cell.2015.10.012
[25]

Wang X, Lu Z, Gomez A, Hon GC, Yue Y, et al. 2014. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505:117−20

doi: 10.1038/nature12730
[26]

Huang H, Weng H, Sun W, Qin X, Shi H, et al. 2018. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nature Cell Biology 20:285−95

doi: 10.1038/s41556-018-0045-z
[27]

Yang J, Yang Q, Huang X, Yan Z, Wang P, et al. 2023. METTL3-mediated LncRNA EN_42575 m6A modification alleviates CPB2 toxin-induced damage in IPEC-J2 cells. International Journal of Molecular Sciences 24(6):5725

doi: 10.3390/ijms24065725
[28]

Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Ż, et al. 2019. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Molecular Cell 76:70−81.e9

doi: 10.1016/j.molcel.2019.07.005
[29]

Stoilov P, Rafalska I, Stamm S. 2002. YTH: a new domain in nuclear proteins. Trends in Biochemical Sciences 27(10):495−97

doi: 10.1016/S0968-0004(02)02189-8
[30]

Liao S, Sun H, Xu C. 2018. YTH domain: a family of N6-methyladenosine (m6a) readers. Genomics, Proteomics & Bioinformatics 16(2):99−107

doi: 10.1016/j.gpb.2018.04.002
[31]

Zhang Z, Theler D, Kaminska KH, Hiller M, de la Grange P, et al. 2010. The YTH domain is a novel RNA binding domain. Journal of Biological Chemistry 285(19):14701−10

doi: 10.1074/jbc.M110.104711
[32]

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, et al. 2015. N6-methyladenosine modulates messenger RNA translation efficiency. Cell 161(6):1388−99

doi: 10.1016/j.cell.2015.05.014
[33]

Ma W, Cui S, Lu Z, Yan X, Cai L, et al. 2022. YTH domain proteins play an essential role in rice growth and stress response. Plants 11(17):2206

doi: 10.3390/plants11172206
[34]

Cheng X, Yao S, Zhang J, Wang D, Xu S, et al. 2024. Genome-wide identification and expression analysis of YTH gene family for abiotic stress regulation in camellia chekiangoleosa. International Journal of Molecular Sciences 25(7):3996

doi: 10.3390/ijms25073996
[35]

Amara U, Hu J, Park SJ, Kang H. 2024. ECT12, an YTH-domain protein, is a potential mRNA m6A reader that affects abiotic stress responses by modulating mRNA stability in Arabidopsis. Plant Physiology and Biochemistry 206:108255

doi: 10.1016/j.plaphy.2023.108255
[36]

Zong X, Xiao X, Shen B, Jiang Q, Wang H, et al. 2021. The N6-methyladenosine RNA-binding protein YTHDF1 modulates the translation of TRAF6 to mediate the intestinal immune response. Nucleic Acids Research 49(10):5537−52

doi: 10.1093/nar/gkab343
[37]

Shi H, Wang X, Lu Z, Zhao BS, Ma H, et al. 2017. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Research 27:315−28

doi: 10.1038/cr.2017.15
[38]

Hesser CR, Walsh D. 2023. YTHDF2 is downregulated in response to host shutoff induced by DNA virus infection and regulates interferon-stimulated gene expression. Journal of Virology 97:e01758-22

doi: 10.1128/jvi.01758-22
[39]

Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, et al. 2016. Nuclear m6A reader YTHDC1 regulates mRNA splicing. Molecular Cell 61(4):507−19

doi: 10.1016/j.molcel.2016.01.012
[40]

Timcheva K, Dufour S, Touat-Todeschini L, Burnard C, Carpentier MC, et al. 2022. Chromatin-associated YTHDC1 coordinates heat-induced reprogramming of gene expression. Cell Reports 41:111784

doi: 10.1016/j.celrep.2022.111784
[41]

Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, et al. 2017. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Research 27:1115−27

doi: 10.1038/cr.2017.99
[42]

Li L, Krasnykov K, Homolka D, Gos P, Mendel M, et al. 2022. The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition. Molecular Cell 82(9):1678−1690.e12

doi: 10.1016/j.molcel.2022.02.034
[43]

Yu H, Gao Q, Wang W, Liu D, He J, et al. 2023. Comprehensive analysis of YTH domain-containing genes, encoding m6A reader and their response to temperature stresses and Yersinia ruckeri infection in rainbow trout (Oncorhynchus mykiss). International Journal of Molecular Sciences 24(11):9348

doi: 10.3390/ijms24119348
[44]

Li F, Zeng C, Liu J, Wang L, Yuan X, et al. 2024. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clinical and Translational Medicine 14(8):e1784

doi: 10.1002/ctm2.1784
[45]

Shao C, Li C, Wang N, Qin Y, Xu W, et al. 2018. Chromosome-level genome assembly of the spotted sea bass, Lateolabrax maculatus. GigaScience 7(11):giy114

doi: 10.1093/gigascience/giy114
[46]

Zhang X, Wen H, Wang H, Ren Y, Zhao J, et al. 2017. RNA-Seq analysis of salinity stress–responsive transcriptome in the liver of spotted sea bass (Lateolabrax maculatus). PLoS One 12(3):e0173238

doi: 10.1371/journal.pone.0173238
[47]

Zhu Q, Li M, Lu W, Wang Y, Li X, et al. 2023. Transcriptomic modulation reveals the specific cellular response in Chinese Sea Bass (Lateolabrax maculatus) gills under salinity change and alkalinity stress. International Journal of Molecular Sciences 24(6):5877

doi: 10.3390/ijms24065877
[48]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: A 'one for all, all for one' bioinformatics platform for biological big-data mining. Molecular Plant 16(11):1733−42

doi: 10.1016/j.molp.2023.09.010
[49]

Guo J, Wang L, Song K, Lu K, Li X, et al. 2023. Physiological response of spotted seabass (Lateolabrax maculatus) to different dietary available phosphorus levels and water temperature: changes in growth, lipid metabolism, antioxidant status and intestinal microbiota. Antioxidants 12(12):2128

doi: 10.3390/antiox12122128
[50]

Hu W, Cao Y, Liu Q, Yuan C, Hu Z. 2024. Effect of salinity on the physiological response and transcriptome of spotted seabass (Lateolabrax maculatus). Marine Pollution Bulletin 203:116432

doi: 10.1016/j.marpolbul.2024.116432
[51]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49(D1):D412−D419

doi: 10.1093/nar/gkaa913
[52]

Chen B, Li Y, Peng W, Zhou Z, Shi Y, et al. 2019. Chromosome-level assembly of the Chinese Seabass (Lateolabrax maculatus) genome. Frontiers in Genetics 10:275

doi: 10.3389/fgene.2019.00275
[53]

Walker JM, ed. 2005. The proteomics protocols handbook. Totowa, NJ: Humana Press. doi: 10.1385/1592598900

[54]

Chou KC, Shen HB. 2010. Cell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms. Natural Science 2:1090−103

doi: 10.4236/ns.2010.210136
[55]

Tian Y, Wen H, Qi X, Zhang X, Liu S, et al. 2019. Characterization of full-length transcriptome sequences and splice variants of Lateolabrax maculatus by single-molecule long-read sequencing and their involvement in salinity regulation. Frontiers in Genetics 10:1126

doi: 10.3389/fgene.2019.01126
[56]

Letunic I, Bork P. 2024. Interactive tree of life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52(W1):W78−W82

doi: 10.1093/nar/gkae268
[57]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43(W1):W39−W49

doi: 10.1093/nar/gkv416
[58]

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, et al. 2020. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48(D1):D265−D268

doi: 10.1093/nar/gkz991
[59]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46(W1):W296−W303

doi: 10.1093/nar/gky427
[60]

Knuckles P, Carl SH, Musheev M, Niehrs C, Wenger A, et al. 2017. RNA fate determination through cotranscriptional adenosine methylation and microprocessor binding. Nature Structural & Molecular Biology 24:561−69

doi: 10.1038/nsmb.3419
[61]

Gu Z. 2022. Complex heatmap visualization. iMeta 1(3):e43

doi: 10.1002/imt2.43
[62]

Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32(18):2847−49

doi: 10.1093/bioinformatics/btw313
[63]

Delaunay S, Helm M, Frye M. 2024. RNA modifications in physiology and disease: towards clinical applications. Nature Reviews Genetics, 25:104−22

doi: 10.1038/s41576-023-00645-2
[64]

Fan S, Xu X, Chen J, Yin Y, Zhao Y. 2024. Genome-wide identification, characterization, and expression analysis of m6A readers-YTH domain-containing genes in alfalfa. BMC Genomics 25:18

doi: 10.1186/s12864-023-09926-w
[65]

Hazra D, Chapat C, Graille M. 2019. m6A mRNA destiny: chained to the rhYTHm by the YTH-containing proteins. Genes 10(1):49

doi: 10.3390/genes10010049
[66]

Sun J, Bie XM, Wang N, Zhang XS, Gao XQ. 2020. Genome-wide identification and expression analysis of YTH domain-containing RNA-binding protein family in common wheat. BMC Plant Biology 20:351

doi: 10.1186/s12870-020-02505-1
[67]

Geng S, Zheng W, Wang W, Lv X, Xin S, et al. 2023. The m6A reader YTHDF2 modulates antiviral and antibacterial activity by suppressing METTL3 methylation-modified STING in fish. The Journal of Immunology 210(5):653−67

doi: 10.4049/jimmunol.2200618
[68]

Zhang C, Guo C, Li Y, Ouyang L, Zhao Q, et al. 2021. The role of YTH domain containing 2 in epigenetic modification and immune infiltration of pan-cancer. Journal of Cellular and Molecular Medicine 25(18):8615−27

doi: 10.1111/jcmm.16818
[69]

Liu Z, Wang T, She Y, Wu K, Gu S, et al. 2021. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Molecular Cancer 20:105

doi: 10.1186/s12943-021-01398-4
[70]

Wang Y, Xu L, Luo S, Sun X, Li J, et al. 2022. The m6A methylation profiles of immune cells in type 1 diabetes mellitus. Frontiers in Immunology 13:1030728

doi: 10.3389/fimmu.2022.1030728
[71]

Zhou J, Wan J, Gao X, Zhang X, Jaffrey SR, et al. 2015. Dynamic m6A mRNA methylation directs translational control of heat shock response. Nature 526:591−94

doi: 10.1038/nature15377