[1]

Blackburn KB. 1923. Sex chromosomes in plants. Nature 112:687−88

doi: 10.1038/112687c0
[2]

Yue J, Chen Q, Zhang S, Lin Y, Ren W, et al. 2024. Origin and evolution of the kiwifruit Y chromosome. Plant Biotechnology Journal 22:287−89

doi: 10.1111/pbi.14213
[3]

Wang D, Li Y, Li M, Yang W, Ma X, et al. 2022. Repeated turnovers keep sex chromosomes young in willows. Genome Biology 23:200

doi: 10.1186/s13059-022-02769-w
[4]

Akagi T, Segawa T, Uchida R, Tanaka H, Shirasawa K, et al. 2025. Evolution and functioning of an X–a balance sex-determining system in hops. Nature Plants 11:1339−52

doi: 10.1038/s41477-025-02017-6
[5]

Barrera-Redondo J, Lipinska AP, Liu P, Dinatale E, Cossard G, et al. 2025. Origin and evolutionary trajectories of brown algal sex chromosomes. Nature Ecology & Evolution

doi: 10.1038/s41559-025-02838-w
[6]

Zhu Z, Younas L, and Zhou Q. 2025. Evolution and regulation of animal sex chromosomes. Nature Reviews Genetics 26:59−74

doi: 10.1038/s41576-024-00757-3
[7]

Renner SS, Müller NA. 2022. Sex determination and sex chromosome evolution in land plants. Philosophical Transactions of the Royal Society B: Biological Sciences 377:20210210

doi: 10.1098/rstb.2021.0210
[8]

Yang Y, Du W, Li Y, Lei J, Pan W. 2025. Recent advances and challenges in de novo genome assembly. Genomics Communications 2:e014

doi: 10.48130/gcomm-0025-0015
[9]

Moraga C, Branco C, Rougemont Q, Jedlička P, Mendoza-Galindo E, et al. 2025. The Silene latifolia genome and its giant Y chromosome. Science 387:630−36

doi: 10.1126/science.adj7430
[10]

She H, Liu Z, Xu Z, Zhang H, Wu J, et al. 2025. Genome sequence of the wild species, Spinacia tetrandra, including a phased sequence of the extensive sex-linked region, revealing partial degeneration in evolutionary strata with unusual properties. New Phytologist 246:2765−81

doi: 10.1111/nph.70165
[11]

Akagi T, Fujita N, Shirasawa K, Tanaka H, Nagaki K, et al. 2025. Rapid and dynamic evolution of a giant Y chromosome in Silene latifolia. Science 387:637−43

doi: 10.1126/science.adk9074
[12]

Charlesworth B, Charlesworth D. 2000. The degeneration of Y chromosomes. Philosophical Transactions of the Royal Society B: Biological Sciences 355:1563−72

doi: 10.1098/rstb.2000.0717
[13]

Charlesworth D. 2016. Plant sex chromosomes. Annual Review of Plant Biology 67:397−420

doi: 10.1146/annurev-arplant-043015-111911
[14]

Bergero R, Charlesworth D. 2009. The evolution of restricted recombination in sex chromosomes. Trends in Ecology & Evolution 24:94−102

doi: 10.1016/j.tree.2008.09.010
[15]

Bachtrog D. 2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nature Reviews Genetics 14:113−24

doi: 10.1038/nrg3366
[16]

Muyle A, Zemp N, Deschamps C, Mousset S, Widmer A, et al. 2012. Rapid de novo evolution of X chromosome dosage compensation in Silene latifolia, a plant with young sex chromosomes. PLoS Biology 10:e1001308

doi: 10.1371/journal.pbio.1001308
[17]

Akagi T, Henry IM, Ohtani H, Morimoto T, Beppu K, et al. 2018. A Y-encoded suppressor of feminization arose via lineage-specific duplication of a cytokinin response regulator in kiwifruit. The Plant Cell 30:780−95

doi: 10.1105/tpc.17.00787
[18]

Akagi T, Pilkington SM, Varkonyi-Gasic E, Henry IM, Sugano SS, et al. 2019. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nature Plants 5:801−9

doi: 10.1038/s41477-019-0489-6
[19]

Renner SS. 2014. The relative and absolute frequencies of angiosperm sexual systems: dioecy, monoecy, gynodioecy, and an updated online database. American Journal of Botany 101:1588−96

doi: 10.3732/ajb.1400196
[20]

Yang W, Wang D, Li Y, Zhang Z, Tong S, et al. 2021. A general model to explain repeated turnovers of sex determination in the Salicaceae. Molecular Biology and Evolution 38:968−80

doi: 10.1093/molbev/msaa261
[21]

Wang Y, Zhang RG, Hörandl E, Zhang ZX, Charlesworth D, et al. 2024. Evolution of sex-linked genes and the role of pericentromeric regions in sex chromosomes: insights from diploid willows. Molecular Biology and Evolution 41:msae235

doi: 10.1093/molbev/msae235
[22]

He L, Wang Y, Wang Y, Zhang RG, Wang Y, et al. 2024. Allopolyploidization from two dioecious ancestors leads to recurrent evolution of sex chromosomes. Nature Communications 15:6893

doi: 10.1038/s41467-024-51158-3
[23]

Akagi T, Henry IM, Kawai T, Comai L, Tao R. 2016. Epigenetic regulation of the sex determination gene MeGI in polyploid persimmon. The Plant Cell 28:2905−15

doi: 10.1105/tpc.16.00532