[1]

Sardon H, Dove AP. 2018. Plastics recycling with a difference. Science 360(6387):380−381

doi: 10.1126/science.aat4997
[2]

Luo Y, Lin X, Lichtfouse E, Jiang H, Wang C. 2023. Conversion of waste plastics into value-added carbon materials. Environmental Chemistry Letters 21(6):3127−3158

doi: 10.1007/s10311-023-01638-7
[3]

Bläsing M, Amelung W. 2018. Plastics in soil: analytical methods and possible sources. Science of The Total Environment 612:422−435

doi: 10.1016/j.scitotenv.2017.08.086
[4]

Coates GW, Getzler YDYL. 2020. Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials 5(7):501−516

doi: 10.1038/s41578-020-0190-4
[5]

Chen G, Li J, Sun Y, Wang Z, Leeke GA, et al. 2024. Replacing traditional plastics with biodegradable plastics: impact on carbon emissions. Engineering 32:152−162

doi: 10.1016/j.eng.2023.10.002
[6]

Nicholson SR, Rorrer NA, Carpenter AC, Beckham GT. 2021. Manufacturing energy and greenhouse gas emissions associated with plastics consumption. Joule 5(3):673−686

doi: 10.1016/j.joule.2020.12.027
[7]

Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3(7):e1700782

doi: 10.1126/sciadv.1700782
[8]

Jiao X, Zheng K, Hu Z, Zhu S, Sun Y, et al. 2021. Conversion of waste plastics into value-added carbonaceous fuels under mild conditions. Advanced Materials 33(50):2005192

doi: 10.1002/adma.202005192
[9]

Barnes DKA, Galgani F, Thompson RC, Barlaz M. 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526):1985−1998

doi: 10.1098/rstb.2008.0205
[10]

Ragaert K, Delva L, Van Geem KV. 2017. Mechanical and chemical recycling of solid plastic waste. Waste Management 69:24−58

doi: 10.1016/j.wasman.2017.07.044
[11]

Houssini K, Li J, Tan Q. 2025. Complexities of the global plastics supply chain revealed in a trade-linked material flow analysis. Communications Earth & Environment 6(1):257

doi: 10.1038/s43247-025-02169-5
[12]

Zheng J, Arifuzzaman M, Tang X, Chen XC, Saito T. 2023. Recent development of end-of-life strategies for plastic in industry and academia: bridging their gap for future deployment. Materials Horizons 10(5):1608−1624

doi: 10.1039/d2mh01549h
[13]

Zhang Y, Wang Q, Yalikun N, Wang H, Wang C, et al. 2023. A comprehensive review of separation technologies for waste plastics in urban mine. Resources Conservation and Recycling 197:107087

doi: 10.1016/j.resconrec.2023.107087
[14]

Mentes D, Nagy G, Szabó TJ, Hornyák-Mester E, Fiser B, et al. 2023. Combustion behaviour of plastic waste–a case study of PP, HDPE, PET, and mixed PES-EL. Journal of Cleaner Production 402:136850

doi: 10.1016/j.jclepro.2023.136850
[15]

Hou Q, Zhang Y, Wang C. 2025. Porous carbon derived from waste plastics for energy and environmental application: a review. Journal of Environmental Chemical Engineering 13(2):115368

doi: 10.1016/j.jece.2025.115368
[16]

Chang SH. 2023. Plastic waste as pyrolysis feedstock for plastic oil production: a review. Science of The Total Environment 877:162719

doi: 10.1016/j.scitotenv.2023.162719
[17]

Lopez G, Artetxe M, Amutio M, Alvarez J, Bilbao J, et al. 2018. Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews 82:576−596

doi: 10.1016/j.rser.2017.09.032
[18]

Yang WT, Xie YY, Xu SM, Wu G, Wang YZ. 2024. Upcycling of polyvinyl chloride to porous carbon for high-performance electromagnetic wave absorption materials. Chemical Engineering Journal 496:154054

doi: 10.1016/j.cej.2024.154054
[19]

Yu X, Rao Z, Chen G, Yang Y, Yoon S, et al. 2024. Plasma-enabled process with single-atom catalysts for sustainable plastic waste transformation. Angewandte Chemie International Edition 63(50):e202404196

doi: 10.1002/anie.202404196
[20]

Zafar MA, Jacob MV. 2024. Instant upcycling of microplastics into graphene and its environmental application. Small Science 4(10):2400176

doi: 10.1002/smsc.202400176
[21]

Bazargan A, McKay G. 2012. A review – synthesis of carbon nanotubes from plastic wastes. Chemical Engineering Journal 195–196:377−391

doi: 10.1016/j.cej.2012.03.077
[22]

Omar RA, Talreja N, Chuhan D, Ashfaq M. 2024. Waste-derived carbon nanostructures (WD-CNs): an innovative step toward waste to treasury. Environmental Research 246:118096

doi: 10.1016/j.envres.2023.118096
[23]

Anusha JR, Citarasu T, Uma G, Vimal S, Kamaraj C, et al. 2024. Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. Chemosphere 352:141417

doi: 10.1016/j.chemosphere.2024.141417
[24]

Pereira L, Castillo V, Calero M, Blázquez G, Solís RR, et al. 2024. Insights into using plastic waste to produce activated carbons for wastewater treatment applications: a review. Journal of Water Process Engineering 62:105386

doi: 10.1016/j.jwpe.2024.105386
[25]

Hou Q, Zhen M, Qian H, Nie Y, Bai X, et al. 2021. Upcycling and catalytic degradation of plastic wastes. Cell Reports Physical Science 2(8):100514

doi: 10.1016/j.xcrp.2021.100514
[26]

Liu JT, Zheng YC, Hou X, Feng XR, Jiang K, et al. 2024. Structured carbon for electromagnetic shielding and microwave absorption from carbonization of waste Polymer: a review. Chemical Engineering Journal 496:154013

doi: 10.1016/j.cej.2024.154013
[27]

Boudenne A, Ibos L, Fois M, Majesté JC, Géhin E. 2005. Electrical and thermal behavior of polypropylene filled with copper particles. Composites Part A: Applied Science and Manufacturing 36(11):1545−1554

doi: 10.1016/j.compositesa.2005.02.005
[28]

Yu J, Sun L, Ma C, Qiao Y, Yao H. 2016. Thermal degradation of PVC: a review. Waste Management 48:300−314

doi: 10.1016/j.wasman.2015.11.041
[29]

Zhang S, Hu Q, Zhang YX, Guo H, Wu Y, et al. 2023. Depolymerization of polyesters by a binuclear catalyst for plastic recycling. Nature Sustainability 6(8):965−973

doi: 10.1038/s41893-023-01118-4
[30]

Kim H, Nam E, An K, Lim H. 2024. Laboratory-scale plastic upcycling and green growth: evaluating the upcycling of plastic waste into carbon nanotubes from economic and environmental aspects. Chemical Engineering Journal 495:153300

doi: 10.1016/j.cej.2024.153300
[31]

Wang J, Shen B, Lan M, Kang D, Wu C. 2020. Carbon nanotubes (CNTs) production from catalytic pyrolysis of waste plastics: the influence of catalyst and reaction pressure. Catalysis Today 351:50−57

doi: 10.1016/j.cattod.2019.01.058
[32]

Veksha A, Lu J, Tsakadze Z, Chen W, Lisak G. 2024. Impact of biogenic impurities on catalytic synthesis of multi-walled carbon nanotubes and hydrogen from polyolefin resins. Journal of Cleaner Production 450:142074

doi: 10.1016/j.jclepro.2024.142074
[33]

You Y, Mayyas M, Xu S, Mansuri I, Gaikwad V, et al. 2017. Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method. Green Chemistry 19(23):5599−5607

doi: 10.1039/C7GC02523H
[34]

Hoseini AHA, Mir RA, Shiraz MHA, Arjmand M, Liu J. 2025. Transforming nonrecyclable plastic waste into cathode materials for energy storage devices. Advanced Sustainable Systems 9(3):2400650

doi: 10.1002/adsu.202400650
[35]

Kaewtrakulchai N, Chanpee S, Jadsadajerm S, Wongrerkdee S, Manatura K, et al. 2024. Co-hydrothermal carbonization of polystyrene waste and maize stover combined with KOH activation to develop nanoporous carbon as catalyst support for catalytic hydrotreating of palm oil. Carbon Resources Conversion 7(4):100231

doi: 10.1016/j.crcon.2024.100231
[36]

Zhou X, He P, Peng W, Lü F, Shao L, et al. 2023. Upcycling of real-world HDPE plastic wastes into high-purity methane and hierarchical porous carbon materials: influence of plastics additives. Journal of Environmental Chemical Engineering 11(2):109327

doi: 10.1016/j.jece.2023.109327
[37]

Sawant SY, Somani RS, Panda AB, Bajaj HC. 2013. Utilization of plastic wastes for synthesis of carbon microspheres and their use as a template for Nanocrystalline Copper(II) oxide hollow spheres. ACS Sustainable Chemistry & Engineering 1(11):1390−1397

doi: 10.1021/sc400119b
[38]

Liu X, Ma C, Wen Y, Chen X, Zhao X, et al. 2021. Highly efficient conversion of waste plastic into thin carbon nanosheets for superior capacitive energy storage. Carbon 171:819−828

doi: 10.1016/j.carbon.2020.09.057
[39]

Hou Y, Fu Q, Zhong H, Yu J, Tao Y, et al. 2024. High-performance plastic-derived metal-free catalysts for organic pollutants degradation via Fenton-like reaction. Science of The Total Environment 916:170185

doi: 10.1016/j.scitotenv.2024.170185
[40]

Chaudhary S, Kumari M, Chauhan P, Ram Chaudhary G. 2021. Upcycling of plastic waste into fluorescent carbon dots: an environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Waste Management 120:675−686

doi: 10.1016/j.wasman.2020.10.038
[41]

Takahashi Y, Chan K, Zinchenko A. 2024. Multi-color polymer carbon dots synthesized from waste polyolefins through phenylenediamine-assisted hydrothermal processing. Chemosphere 354:141685

doi: 10.1016/j.chemosphere.2024.141685
[42]

Hong S, Ku J, Park S, Park J, Yu YS, et al. 2024. Recycling of polyethylene via hydrothermal carbonization for the Li-ion battery anode. Carbon Letters 34(5):1529−1536

doi: 10.1007/s42823-024-00721-5
[43]

De Volder MFL, Tawfick SH, Baughman RH, Hart AJ. 2013. Carbon nanotubes: present and future commercial applications. Science 339(6119):535−539

doi: 10.1126/science.1222453
[44]

Li ZJ, Wang L, Su YJ, Liu P, Zhang YF. 2009. Semiconducting single-walled carbon nanotubes synthesized by S-doping. Nano-Micro Letters 1(1):9−13

doi: 10.1007/BF03353598
[45]

Xiao H, Li S, Shi Z, Cui C, Xia S, et al. 2023. Plasma-catalytic pyrolysis of polypropylene for hydrogen and carbon nanotubes: understanding the influence of plasma on volatiles. Applied Energy 351:121848

doi: 10.1016/j.apenergy.2023.121848
[46]

Gong J, Liu J, Jiang Z, Wen X, Chen X, et al. 2013. Effect of the added amount of organically-modified montmorillonite on the catalytic carbonization of polypropylene into cup-stacked carbon nanotubes. Chemical Engineering Journal 225:798−808

doi: 10.1016/j.cej.2013.03.112
[47]

Song C, Hao L, Zhang B, Dong Z, Tang Q, et al. 2020. High-performance solar vapor generation of Ni/carbon nanomaterials by controlled carbonization of waste polypropylene. Science China Materials 63(5):779−793

doi: 10.1007/s40843-019-1243-8
[48]

Liu Q, Jiang D, Zhou H, Yuan X, Wu C, et al. 2023. Pyrolysis–catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proceedings of the National Academy of Sciences of the United States of America 120(39):e2305078120

doi: 10.1073/pnas.2305078120
[49]

Chen WQ, Fu X, Veksha A, Lipik V, Lisak G. 2022. Few-walled carbon nanotubes derived from shoe waste plastics: effect of feedstock composition on synthesis, properties and application as CO2 reduction electrodes. Journal of Cleaner Production 356:131868

doi: 10.1016/j.jclepro.2022.131868
[50]

Hu G, Wang H, Liu H, Wen X, Liu J, et al. 2024. Green conversion of waste polyester into few-layer graphene for interfacial solar-driven evaporation and hydroelectric electricity generation. Journal of Cleaner Production 478:143960

doi: 10.1016/j.jclepro.2024.143960
[51]

Wyss KM, Beckham JL, Chen W, Luong DX, Hundi P, et al. 2021. Converting plastic waste pyrolysis ash into flash graphene. Carbon 174:430−438

doi: 10.1016/j.carbon.2020.12.063
[52]

Advincula PA, Luong DX, Chen W, Raghuraman S, Shahsavari R, et al. 2021. Flash graphene from rubber waste. Carbon 178:649−656

doi: 10.1016/j.carbon.2021.03.020
[53]

Pacchioni G. 2022. Graphene from plastic waste makes cars greener. Nature Reviews Materials 7(6):425

doi: 10.1038/s41578-022-00452-x
[54]

Luong DX, Bets KV, Ali Algozeeb W, Stanford MG, Kittrell C, et al. 2020. Gram-scale bottom-up flash graphene synthesis. Nature 577(7792):647−651

doi: 10.1038/s41586-020-1938-0
[55]

Algozeeb WA, Savas PE, Luong DX, Chen W, Kittrell C, et al. 2020. Flash graphene from plastic waste. ACS Nano 14(11):15595−15604

doi: 10.1021/acsnano.0c06328
[56]

Gu J, Pang A, Guo X, Li L, Huang D, et al. 2021. Green preparation of high-quality and low-cost graphene from discarded polyethylene plastic bags. Chemical Communications 57(1):129−132

doi: 10.1039/d0cc06999j
[57]

Cui L, Wang X, Chen N, Ji B, Qu L. 2017. Trash to treasure: converting plastic waste into a useful graphene foil. Nanoscale 9(26):9089−9094

doi: 10.1039/C7NR03580B
[58]

Liu N, Hao L, Zhang B, Niu R, Gong J, et al. 2022. Rational design of high-performance bilayer solar evaporator by using waste polyester-derived porous carbon-coated wood. Energy & Environmental Materials 5(2):617−626

doi: 10.1002/eem2.12199
[59]

Ligero A, Calero M, Pérez A, Solís RR, Muñoz-Batista MJ, et al. 2023. Low-cost activated carbon from the pyrolysis of post-consumer plastic waste and the application in CO2 capture. Process Safety and Environmental Protection 173:558−566

doi: 10.1016/j.psep.2023.03.041
[60]

Deshmukh AA, Mhlanga SD, Coville NJ. 2010. Carbon spheres. Materials Science and Engineering: R: Reports 70(1−2):1−28

doi: 10.1016/j.mser.2010.06.017
[61]

He X, Zhong L, Qiu X, Wen F, Sun S, et al. 2023. Sustainable polyvinyl chloride-derived soft carbon anodes for potassium-ion storage: electrochemical behaviors and mechanism. ChemSusChem 16(19):e202300646

doi: 10.1002/cssc.202300646
[62]

Fathi J, Mašláni A, Hlína M, Lukáč F, Mušálek R, et al. 2024. Multiple benefits of polypropylene plasma gasification to consolidate plastic treatment, CO2 utilization, and renewable electricity storage. Fuel 368:131692

doi: 10.1016/j.fuel.2024.131692
[63]

Roy PS, Garnier G, Allais F, Saito K. 2021. Strategic approach towards plastic waste valorization: challenges and promising chemical upcycling possibilities. ChemSusChem 14(19):4007−4027

doi: 10.1002/cssc.202100904
[64]

Yuan X, Cho MK, Lee JG, Choi SW, Lee KB. 2020. Upcycling of waste polyethylene terephthalate plastic bottles into porous carbon for CF4 adsorption. Environmental Pollution 265:114868

doi: 10.1016/j.envpol.2020.114868
[65]

Tang Y, Cen Z, Ma Q, Zheng B, Cai Z, et al. 2023. A versatile sulfur-assisted pyrolysis strategy for high-atom-economy upcycling of waste plastics into high-value carbon materials. Advanced Science 10(15):2206924

doi: 10.1002/advs.202206924
[66]

Dai L, Karakas O, Lata S, Cobb K, Lei H, et al. 2023. Holistic utilization of waste plastics through a tandem process. Journal of Environmental Chemical Engineering 11(5):110547

doi: 10.1016/j.jece.2023.110547
[67]

Yao D, Li H, Mohan BC, Prabhakar AK, Dai Y, et al. 2022. Conversion of waste plastic packings to carbon nanomaterials: investigation into catalyst material, waste type, and product applications. ACS Sustainable Chemistry & Engineering 10(3):1125−1136

doi: 10.1021/acssuschemeng.1c05945
[68]

Ma W, Zhu Y, Cai N, Wang X, Chen Y, et al. 2023. Preparation of carbon nanotubes by catalytic pyrolysis of dechlorinated PVC. Waste Management 169:62−69

doi: 10.1016/j.wasman.2023.06.034
[69]

Yuan X, Li S, Jeon S, Deng S, Zhao L, et al. 2020. Valorization of waste polyethylene terephthalate plastic into N-doped microporous carbon for CO2 capture through a one-pot synthesis. Journal of Hazardous Materials 399:123010

doi: 10.1016/j.jhazmat.2020.123010
[70]

Zhou XL, He PJ, Peng W, Yi SX, Lü F, et al. 2022. Upcycling waste polyvinyl chloride: one-pot synthesis of valuable carbon materials and pipeline-quality syngas via pyrolysis in a closed reactor. Journal of Hazardous Materials 427:128210

doi: 10.1016/j.jhazmat.2021.128210
[71]

Ma C, Min J, Gong J, Liu X, Mu X, et al. 2020. Transforming polystyrene waste into 3D hierarchically porous carbon for high-performance supercapacitors. Chemosphere 253:126755

doi: 10.1016/j.chemosphere.2020.126755
[72]

Yu W, Chen Z, Yu S, Ding J, Shan Y, et al. 2019. Highly dispersed Pt catalyst supported on nanoporous carbon derived from waste PET bottles for reductive alkylation. RSC Advances 9(53):31092−31101

doi: 10.1039/C9RA04976B
[73]

Li J, Chen K, Lin L, Han S, Meng F, et al. 2024. Product selection toward high-value hydrogen and bamboo-shaped carbon nanotubes from plastic waste by catalytic microwave processing. Environmental Science & Technology 58(33):14675−14686

doi: 10.1021/acs.est.4c03471
[74]

Jie X, Li W, Slocombe D, Gao Y, Banerjee I, et al. 2020. Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons. Nature Catalysis 3(11):902−912

doi: 10.1038/s41929-020-00518-5
[75]

Wyss KM, Li JT, Advincula PA, Bets KV, Chen W, et al. 2023. Upcycling of waste plastic into hybrid carbon nanomaterials. Advanced Materials 35(16):2209621

doi: 10.1002/adma.202209621
[76]

Wyss KM, Chen W, Beckham JL, Savas PE, Tour JM. 2022. Holey and wrinkled flash graphene from mixed plastic waste. ACS Nano 16(5):7804−7815

doi: 10.1021/acsnano.2c00379
[77]

Maqsood T, Dai J, Zhang Y, Guang M, Li B. 2021. Pyrolysis of plastic species: a review of resources and products. Journal of Analytical and Applied Pyrolysis 159:105295

doi: 10.1016/j.jaap.2021.105295
[78]

Zhang K, Huang Z, Yang M, Liu M, Zhou Y, et al. 2023. Recent progress in melt pyrolysis: fabrication and applications of high-value carbon materials from abundant sources. SusMat 3(5):558−580

doi: 10.1002/sus2.157
[79]

Belo CR, da Paixão Cansado IP, Mourão PAM. 2017. Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase. Environmental Technology 38(3):285−296

doi: 10.1080/09593330.2016.1190409
[80]

Ma R, Han GF, Li F, Bu Y. 2025. Rational design of carbon-based electrocatalysts for H2O2 production by machine learning and structural engineering. Advanced Energy Materials 15(23):2500953

doi: 10.1002/aenm.202500953
[81]

Loke KY, Lim XX, Osman MA, Low SC, Oh WD. 2025. Enhancing plastic pyrolysis for carbon nanotubes synthesis through machine learning integration: a review. Journal of Analytical and Applied Pyrolysis 187:106989

doi: 10.1016/j.jaap.2025.106989
[82]

Dai L, Hu X, Zhao C, Zhou H, Zhang Z, et al. 2024. Machine learning constructs the microstructure and mechanical properties that accelerate the development of CFRP pyrolysis for carbon-fiber recycling. Waste Management 190:12−23

doi: 10.1016/j.wasman.2024.09.002
[83]

Cao K, Zhang S, Shi Y, Diao X, Wei R, et al. 2025. Catalytic upgrading of plastic wastes into high-value carbon nanomaterials: synthesis and applications. ACS Nano 19(13):12734−12761

doi: 10.1021/acsnano.5c03391
[84]

Li C, Sun Y, Li Q, Zhang L, Zhang S, et al. 2022. Effects of volatiles on properties of char during sequential pyrolysis of PET and cellulose. Renewable Energy 189:139−151

doi: 10.1016/j.renene.2022.02.091
[85]

Borsodi N, Szentes A, Miskolczi N, Wu C, Liu X. 2016. Carbon nanotubes synthetized from gaseous products of waste polymer pyrolysis and their application. Journal of Analytical and Applied Pyrolysis 120:304−313

doi: 10.1016/j.jaap.2016.05.018
[86]

Cai N, Li X, Xia S, Sun L, Hu J, et al. 2021. Pyrolysis-catalysis of different waste plastics over Fe/Al2O3 catalyst: high-value hydrogen, liquid fuels, carbon nanotubes and possible reaction mechanisms. Energy Conversion and Management 229:113794

doi: 10.1016/j.enconman.2020.113794
[87]

Wu Q, Lv X, Xu N, Xin L, Lin G, et al. 2023. Upcycling plastic polymers into single-walled carbon nanotubes from a magnesia supported iron catalyst. Carbon 215:118492

doi: 10.1016/j.carbon.2023.118492
[88]

Cai N, Xia S, Zhang X, Meng Z, Bartocci P, et al. 2020. Preparation of of iron- and nitrogen-codoped carbon nanotubes from waste plastics pyrolysis for the oxygen reduction reaction. ChemSusChem 13(5):938−944

doi: 10.1002/cssc.201903293
[89]

Abbas A, Yi YM, Saleem F, Jin Z, Veksha A, et al. 2021. Multiwall carbon nanotubes derived from plastic packaging waste as a high-performance electrode material for supercapacitors. International Journal of Energy Research 45(13):19611−19622

doi: 10.1002/er.6967
[90]

Yao D, Li H, Dai Y, Wang CH. 2021. Impact of temperature on the activity of Fe-Ni catalysts for pyrolysis and decomposition processing of plastic waste. Chemical Engineering Journal 408:127268

doi: 10.1016/j.cej.2020.127268
[91]

Yao D, Yang H, Hu Q, Chen Y, Chen H, et al. 2021. Carbon nanotubes from post-consumer waste plastics: investigations into catalyst metal and support material characteristics. Applied Catalysis B: Environmental 280:119413

doi: 10.1016/j.apcatb.2020.119413
[92]

Wang Y, Wen Y, Su W, Fu W, Wang CH. 2024. Carbon deposition behavior on biochar during chemical vapor deposition process. Chemical Engineering Journal 485:149726

doi: 10.1016/j.cej.2024.149726
[93]

Chauhan S. 2023. Synthesis of ordered mesoporous carbon by soft template method. Materials Today: Proceedings 81:842−847

doi: 10.1016/j.matpr.2021.04.257
[94]

Lian Y, Ni M, Huang Z, Chen R, Zhou L, et al. 2019. Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors. Chemical Engineering Journal 366:313−320

doi: 10.1016/j.cej.2019.02.063
[95]

Fan Z, Ren J, Bai H, He P, Hao L, et al. 2023. Shape-controlled fabrication of MnO/C hybrid nanoparticle from waste polyester for solar evaporation and thermoelectricity generation. Chemical Engineering Journal 451:138534

doi: 10.1016/j.cej.2022.138534
[96]

Al-Enizi AM, Ahmed J, Ubaidullah M, Shaikh SF, Ahamad T, et al. 2020. Utilization of waste polyethylene terephthalate bottles to develop metal-organic frameworks for energy applications: a clean and feasible approach. Journal of Cleaner Production 248:119251

doi: 10.1016/j.jclepro.2019.119251
[97]

Zhang F, Chen S, Nie S, Luo J, Lin S, et al. 2019. Waste PET as a reactant for lanthanide MOF synthesis and application in sensing of picric acid. Polymers 11(12):2015

doi: 10.3390/polym11122015
[98]

Cui Y, Zhang Y, Cui L, Liu Y, Li B, et al. 2023. Microwave-assisted pyrolysis of polypropylene plastic for liquid oil production. Journal of Cleaner Production 411:137303

doi: 10.1016/j.jclepro.2023.137303
[99]

Shoukat B, Naz MY, Yaseen M, Noreen S. 2024. Microwave-driven pyrolysis of plastic waste into carbon nanotubes and hydrogen using spinel ferrites. Chemical Engineering & Technology 47(7):1013−1023

doi: 10.1002/ceat.202300288
[100]

Jiang H, Zhou J, Zhou Q, Qin L, Zhao D, et al. 2024. Microwave assisted plastic waste derived O vacancies enriched cobalt oxide/porous carbon material for highly efficient carbamazepine degradation via peroxymonosulfate activation. Chemical Engineering Journal 489:151256

doi: 10.1016/j.cej.2024.151256
[101]

Xie M, Xu H, Wang Y, Pan H, Duan D, et al. 2023. Constructing bifunctional porous nanosheets for efficient conversion of waste plastics into valuable hydrogen and carbons. Chemical Engineering Journal 471:144460

doi: 10.1016/j.cej.2023.144460
[102]

Wang S, Hu Y, Lu S, Zhang B, Li S, et al. 2024. Highly efficient recycling waste plastic into hydrogen and carbon nanotubes through a double layer microwave-assisted pyrolysis method. Macromolecular Rapid Communications 45(18):2400270

doi: 10.1002/marc.202400270
[103]

Qu M, Guo Y, Cai Y, Nie Z, Zhang C. 2024. Upgrading polyolefin plastic waste into multifunctional porous graphene using silicone-assisted direct laser writing. Small 20(38):2310273

doi: 10.1002/smll.202310273
[104]

Smith P, Obando AG, Griffin A, Robertson M, Bounds E, et al. 2023. Additive manufacturing of carbon using commodity polypropylene. Advanced Materials 35(17):2208029

doi: 10.1002/adma.202208029
[105]

Karimi M, Shirzad M, Silva JAC, Rodrigues AE. 2023. Carbon dioxide separation and capture by adsorption: a review. Environmental Chemistry Letters 21(4):2041−2084

doi: 10.1007/s10311-023-01589-z
[106]

Yuan X, Lee JG, Yun H, Deng S, Kim YJ, et al. 2020. Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2. Chemical Engineering Journal 397:125350

doi: 10.1016/j.cej.2020.125350
[107]

Zhou X, Zhu L, Dong W, Jiang M. 2023. Solving two environmental problems simultaneously: microporous carbon derived from mixed plastic waste for CO2 capture. Chemosphere 345:140546

doi: 10.1016/j.chemosphere.2023.140546
[108]

Algozeeb WA, Savas PE, Yuan Z, Wang Z, Kittrell C, et al. 2022. Plastic waste product captures carbon dioxide in nanometer pores. ACS Nano 16(5):7284−7290

doi: 10.1021/acsnano.2c00955
[109]

Zhou S, Xu H, Wang S, Feng H, Hu Y, et al. 2024. Low temperature and facile synthesis of nitrogen-doped hierarchical porous carbon derived from waste polyethylene terephthalate for efficient CO2 capture. Science of The Total Environment 914:169856

doi: 10.1016/j.scitotenv.2023.169856
[110]

Yao N, Wang X, Yang Z, Zhao P, Meng X. 2023. Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water. Journal of Hazardous Materials 456:131687

doi: 10.1016/j.jhazmat.2023.131687
[111]

Liu X, Ding H, Shen C, Xu D, Yan R, et al. 2023. Post-consumer plastics/CoxMn3–xO4 spinels derived Co/MnO@carbon nanotube composites towards advanced electromagnetic absorbents. Carbon 213:118273

doi: 10.1016/j.carbon.2023.118273
[112]

Pérez-Huertas S, Calero M, Ligero A, Pérez A, Terpiłowski K, et al. 2023. On the use of plastic precursors for preparation of activated carbons and their evaluation in CO2 capture for biogas upgrading: a review. Waste Management 161:116−141

doi: 10.1016/j.wasman.2023.02.022
[113]

Dan E, McCue AJ, Dionisi D, Martín CF. 2024. Household mixed plastic waste derived adsorbents for CO2 capture: a feasibility study. Journal of Environmental Management 355:120466

doi: 10.1016/j.jenvman.2024.120466
[114]

Liu X, Yang F, Li M, Wang S, Sun C. 2022. From polyvinyl chloride waste to activated carbons: the role of occurring additives on porosity development and gas adsorption properties. Science of The Total Environment 833:154894

doi: 10.1016/j.scitotenv.2022.154894
[115]

Wang K, Guo C, Li J, Wang Y, Xing Y, et al. 2025. Efficient degradation of tetracycline via N-doped carbon derived from discarded PET plastics by boosting peroxymonosulfate activation and singlet oxygen generation. Chemical Engineering Journal 507:160653

doi: 10.1016/j.cej.2025.160653
[116]

Bian S, Cai Z, Xing W, Zhao C, Pan Y, et al. 2025. Microporous carbon derived from waste plastics for efficient adsorption of tetracycline: adsorption mechanism and application potentials. Environmental Research 268:120785

doi: 10.1016/j.envres.2025.120785
[117]

Sun R, Yang J, Huang R, Wang C. 2022. Controlled carbonization of microplastics loaded nano zero-valent iron for catalytic degradation of tetracycline. Chemosphere 303:135123

doi: 10.1016/j.chemosphere.2022.135123
[118]

Jia Z, Kong M, Yu B, Ma Y, Pan J, et al. 2022. Tunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption properties. Journal of Materials Science & Technology 127:153−163

doi: 10.1016/j.jmst.2022.04.005
[119]

Cai Z, Yang H, Zhou H, Lin Y, Cheng Y, et al. 2024. Achieving efficient electromagnetic absorption in multifunctional carbon nanotube aerogels by manipulating radialized network structure. Chemical Engineering Journal 498:155629

doi: 10.1016/j.cej.2024.155629
[120]

Cheng S, Zeng X, Liu P. 2024. One-step synthesis of magnetic N-doped carbon nanotubes derived from waste plastics for effective Cr(VI) removal. Arabian Journal of Chemistry 17(10):105956

doi: 10.1016/j.arabjc.2024.105956
[121]

Zhao Y, Zhang Y, Wang Y, Cao D, Sun X, et al. 2021. Versatile zero- to three-dimensional carbon for electrochemical energy storage. Carbon Energy 3(6):895−915

doi: 10.1002/cey2.137
[122]

Jiang M, Wang X, Xi W, Zhou H, Yang P, et al. 2023. Upcycling plastic waste to carbon materials for electrochemical energy storage and conversion. Chemical Engineering Journal 461:141962

doi: 10.1016/j.cej.2023.141962
[123]

Mohd Abdah MAA, Mohammad Azlan FN, Wong WP, Mustafa MN, Walvekar R, et al. 2024. Microwave-assisted upcycling of plastic waste to high-performance carbon anode for lithium-ion batteries. Chemosphere 349:140973

doi: 10.1016/j.chemosphere.2023.140973
[124]

Pei Y, Liao Y, Zhang J, Zhong H, Yang Y, et al. 2024. Upcycling drinking bottle waste to intercalated 2D-0D carbon architectures and its supercapacitor applications. Journal of Power Sources 620:235252

doi: 10.1016/j.jpowsour.2024.235252
[125]

Palanisamy M, Perumal R, Zhang D, Wang H, Maximova O, et al. 2024. Graphene triggered catalytic attack on plastic waste produces graphitic shell encapsulation on cobalt nanoparticles for ferromagnetism and stable Li+ ion storage. Journal of Materials Chemistry A 12(30):19081−19093

doi: 10.1039/d4ta01354a
[126]

Li J, Dou F, Gong J, Gao Y, Hua Y, et al. 2023. Recycling of plastic wastes for the mass production of Yolk–shell-nanostructured Co3O4@C for lithium-ion batteries. ACS Applied Nano Materials 6:1171−1180

doi: 10.1021/acsanm.2c04757
[127]

da Silva EP, Fragal VH, Fragal EH, Sequinel T, Gorup LF, et al. 2023. Sustainable energy and waste management: how to transform plastic waste into carbon nanostructures for electrochemical supercapacitors. Waste Management 171:71−85

doi: 10.1016/j.wasman.2023.08.028
[128]

Gao W, Zhao Y, Chen W, Zhuang J, Shang M, et al. 2023. From plastic to supercapacitor electrode materials: preparation and properties of cobalt oxide/carbon composites with polyethylene terephthalate as carbon source. Ceramics International 49(5):7266−7273

doi: 10.1016/j.ceramint.2022.10.180
[129]

Zhou X, Zhu L, Yang Y, Xu L, Qian X, et al. 2022. High-yield and nitrogen self-doped hierarchical porous carbon from polyurethane foam for high-performance supercapacitors. Chemosphere 300:134552

doi: 10.1016/j.chemosphere.2022.134552
[130]

Dědek I, Bartusek S, Dvořáček JJ, Nečas J, Petruš J, et al. 2023. Maximizing the electrochemical performance of supercapacitor electrodes from plastic waste. Journal of Energy Storage 72:108660

doi: 10.1016/j.est.2023.108660