[1]

FAO. 2019. The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. Food and Agriculture Organization of the United Nations, Roma, Italy. doi: 10.4060/CA6030EN

[2]

Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants 3:17074

doi: 10.1038/nplants.2017.74
[3]

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, et al. 2013. The global nitrogen cycle in the twenty-first century. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368:20130164

doi: 10.1098/rstb.2013.0164
[4]

Martre P, Dueri S, Guarin JR, Ewert F, Webber H, et al. 2024. Global needs for nitrogen fertilizer to improve wheat yield under climate change. Nature Plants 10:1081−1090

doi: 10.1038/s41477-024-01739-3
[5]

Shang Y, Yin Y, Ying H, Tian X, Cui Z. 2024. Updated loss factors and high-resolution spatial variations for reactive nitrogen losses from Chinese rice paddies. Journal of Environmental Management 358:120752

doi: 10.1016/j.jenvman.2024.120752
[6]

Behera SN, Sharma M, Aneja VP, Balasubramanian R. 2013. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research 20:8092−8131

doi: 10.1007/s11356-013-2051-9
[7]

Ti C, Gao B, Luo Y, Wang S, Chang SX, et al. 2018. Dry deposition of N has a major impact on surface water quality in the Taihu Lake region in southeast China. Atmospheric Environment 190:1−9

doi: 10.1016/j.atmosenv.2018.07.017
[8]

Ravishankara AR, Daniel JS, Portmann RW. 2009. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123−125

doi: 10.1126/science.1176985
[9]

Montzka SA, Dlugokencky EJ, Butler JH. 2011. Non-CO2 greenhouse gases and climate change. Nature 476:43−50

doi: 10.1038/nature10322
[10]

Zhan X, Zhang Q, Li M, Hou X, Shang Z, et al. 2024. The shape of reactive nitrogen losses from intensive farmland in China. Science of The Total Environment 915:170014

doi: 10.1016/j.scitotenv.2024.170014
[11]

Liu L, Xu W, Lu X, Zhong B, Guo Y, et al. 2022. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proceedings of the National Academy of Sciences of the United States of America 119:e2121998119

doi: 10.1073/pnas.2121998119
[12]

Qian H, Zhu X, Huang S, Linquist B, Kuzyakov Y, et al. 2023. Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment 4:716−732

doi: 10.1038/s43017-023-00482-1
[13]

Han B, Zhang Y, Yang W, Yu Y, Tang K, et al. 2024. Surface exchange of HONO over paddy fields in the Pearl River Delta, China. Atmospheric Environment 338:120853

doi: 10.1016/j.atmosenv.2024.120853
[14]

Yin X, Tang F, Huang Z, Liao S, Sha Q, et al. 2023. Developing a model-ready highly resolved HONO emission inventory in Guangdong using domestic measured emission factors. Science of The Total Environment 899:165737

doi: 10.1016/j.scitotenv.2023.165737
[15]

Shen J, Chen D, Bai M, Sun J, Coates T, et al. 2016. Ammonia deposition in the neighbourhood of an intensive cattle feedlot in Victoria, Australia. Scientific Reports 6:32793

doi: 10.1038/srep32793
[16]

Conrad R. 1996. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews 60:609−640

doi: 10.1128/mr.60.4.609-640.1996
[17]

Wunderlin P, Lehmann MF, Siegrist H, Tuzson B, Joss A, et al. 2013. Isotope signatures of N2O in a mixed microbial population system: constraints on N2O producing pathways in wastewater treatment. Environmental Science & Technology 47:1339−1348

doi: 10.1021/es303174x
[18]

Remde A, Conrad R. 1991. Role of nitrification and denitrification for NO metabolism in soil. Biogeochemistry 12:189−205

doi: 10.1007/BF00002607
[19]

Russow R, Spott O, Stange CF. 2008. Evaluation of nitrate and ammonium as sources of NO and N2O emissions from black earth soils (Haplic Chernozem) based on 15N field experiments. Soil Biology and Biochemistry 40:380−391

doi: 10.1016/j.soilbio.2007.08.020
[20]

Kuypers MMM, Marchant HK, Kartal B. 2018. The microbial nitrogen-cycling network. Nature Reviews Microbiology 16:263−276

doi: 10.1038/nrmicro.2018.9
[21]

Wang Y, Cao W, Zhang X, Guo J. 2017. Abiotic nitrate loss and nitrogenous trace gas emission from Chinese acidic forest soils. Environmental Science and Pollution Research 24:22679−22687

doi: 10.1007/s11356-017-9797-4
[22]

Oswald R, Behrendt T, Ermel M, Wu D, Su H, et al. 2013. HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341:1233−1235

doi: 10.1126/science.1242266
[23]

Wu D, Horn MA, Behrendt T, Müller S, Li J, et al. 2019. Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle. The ISME Journal 13:1688−1699

doi: 10.1038/s41396-019-0379-y
[24]

Chu Q, Xing Y, He W, Yan L, Li D, et al. 2023. Modeling ammonia emissions and abatement potential from the rice-wheat rotation fields using the calibrated DNDC model: a case study in Shanghai, China. Atmospheric Environment 305:119782

doi: 10.1016/j.atmosenv.2023.119782
[25]

Lee J, Choi S, Lee Y, Kim SY. 2021. Impact of manure compost amendments on NH3 volatilization in rice paddy ecosystems during cultivation. Environmental Pollution 288:117726

doi: 10.1016/j.envpol.2021.117726
[26]

Stange CF, Spott O, Arriaga H, Menéndez S, Estavillo JM, et al. 2013. Use of the inverse abundance approach to identify the sources of NO and N2O release from Spanish forest soils under oxic and hypoxic conditions. Soil Biology and Biochemistry 57:451−458

doi: 10.1016/j.soilbio.2012.10.006
[27]

Abid AA, Yu S, Zou X, Batool I, Castellano-Hinojosa A, et al. 2024. Unraveling nitrogen loss in paddy soils: a study of anaerobic nitrogen transformation in response to various irrigation practice. Environmental Research 252:118693

doi: 10.1016/j.envres.2024.118693
[28]

Wang T, Zhang J, Dhital Y, Ma K, Wen Y, et al. 2024. Increasing dissolved oxygen concentration of irrigation water is beneficial to nitrogen uptake of cotton under mulched drip irrigation. Field Crops Research 316:109494

doi: 10.1016/j.fcr.2024.109494
[29]

Hu M, Xue H, Wade AJ, Gao N, Qiu Z, et al. 2024. Biofertilizer supplements allow nitrogen fertilizer reduction, maintain yields, and reduce nitrogen losses to air and water in China paddy fields. Agriculture, Ecosystems & Environment 362:108850

doi: 10.1016/j.agee.2023.108850
[30]

Li D, Chu Q, Qian C, Liu X, Chen C, et al. 2025. Recycling C and N from biogas slurry and wastewater of hydrothermal carbonization to rice-paddy systems: enhanced soil dissolved C and N retention. Environmental Research 277:121584

doi: 10.1016/j.envres.2025.121584
[31]

Li D, Li H, Chen D, Xue L, He H, et al. 2021. Clay-hydrochar composites mitigated CH4 and N2O emissions from paddy soil: a whole rice growth period investigation. Science of The Total Environment 780:146532

doi: 10.1016/j.scitotenv.2021.146532
[32]

Li H, Li D, Xu S, Wang Z, Chen X, et al. 2023. Hydrothermal carbonization of biogas slurry and cattle manure into soil conditioner mitigates ammonia volatilization from paddy soil. Chemosphere 344:140378

doi: 10.1016/j.chemosphere.2023.140378
[33]

Zhou X, Wang S, Ma S, Zheng X, Wang Z, et al. 2020. Effects of commonly used nitrification inhibitors—dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin—on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 380:114637

doi: 10.1016/j.geoderma.2020.114637
[34]

Meng X, Li Y, Yao H, Wang J, Dai F, et al. 2020. Nitrification and urease inhibitors improve rice nitrogen uptake and prevent denitrification in alkaline paddy soil. Applied Soil Ecology 154:103665

doi: 10.1016/j.apsoil.2020.103665
[35]

Prabakaran S, Mohanraj T, Arumugam A, Sudalai S. 2022. A state-of-the-art review on the environmental benefits and prospects of Azolla in biofuel, bioremediation and biofertilizer applications. Industrial Crops and Products 183:114942

doi: 10.1016/j.indcrop.2022.114942
[36]

Wang F, Wang S, Xu S, Shen J, Cao L, et al. 2022. A non-chemical weed control strategy, introducing duckweed into the paddy field. Pest Management Science 78:3654−3663

doi: 10.1002/ps.7008
[37]

Asolekar SR, Kalbar PP, Chaturvedi Mk, Maillacheruvu KY. 2014. Rejuvenation of rivers and lakes in India: balancing societal priorities with technological possibilities. Comprehensive Water Quality and Purification 4:181−229

doi: 10.1016/b978-0-12-382182-9.00075-x
[38]

Liu W, Xu J, Li Y, Liu X, Gao N, et al. 2024. Alternating wet and dry irrigation cycles enhance the nitrogen "cache" function of duckweed in a rice-duckweed system. Agriculture, Ecosystems & Environment 369:109044

doi: 10.1016/j.agee.2024.109044
[39]

Li H, Liang X, Lian Y, Xu L, Chen Y. 2009. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields. Soil Science Society of America Journal 73:1890−1895

doi: 10.2136/sssaj2008.0230
[40]

Sun H, Zhang H, Min J, Feng Y, Shi W. 2016. Controlled-release fertilizer, floating duckweed, and biochar affect ammonia volatilization and nitrous oxide emission from rice paddy fields irrigated with nitrogen-rich wastewater. Paddy and Water Environment 14:105−111

doi: 10.1007/s10333-015-0482-2
[41]

Sun H, A D, Feng Y, Vithanage M, Mandal S, et al. 2019. Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils. Chemosphere 237:124532

doi: 10.1016/j.chemosphere.2019.124532
[42]

Wu D, Zhang J, Wang M, An J, Wang R, et al. 2022. Global and regional patterns of soil nitrous acid emissions and their acceleration of rural photochemical reactions. Journal of Geophysical Research: Atmospheres 127:e2021JD036379

doi: 10.1029/2021JD036379
[43]

Wu D, Deng L, Liu Y, Xi D, Zou H, et al. 2020. Comparisons of the effects of different drying methods on soil nitrogen fractions: insights into emissions of reactive nitrogen gases (HONO and NO). Atmospheric and Oceanic Science Letters 13:224−231

doi: 10.1080/16742834.2020.1733388
[44]

Wu D, Deng L, Sun Y, Wang R, Zhang L, et al. 2022. Climate warming, but not Spartina alterniflora invasion, enhances wetland soil HONO and NOx emissions. Science of The Total Environment 823:153710

doi: 10.1016/j.scitotenv.2022.153710
[45]

Conrad R. 1995. Soil microbial processes and the cycling of atmospheric trace gases. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences 351:219−230

doi: 10.1098/rsta.1995.0030
[46]

Ke P, Kang R, Avery LK, Zhang J, Yu Q, et al. 2022. Temporal variations of soil NO and NO2 fluxes in two typical subtropical forests receiving contrasting rates of N deposition. Environmental Pollution 295:118696

doi: 10.1016/j.envpol.2021.118696
[47]

Yang W, Yuan H, Han C, Yang H, Xue X. 2020. Photochemical emissions of HONO, NO2 and NO from the soil surface under simulated sunlight. Atmospheric Environment 234:117596

doi: 10.1016/j.atmosenv.2020.117596
[48]

Zheng X, Wang M, Wang Y, Shen R, Gou J, et al. 2000. Impacts of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere - Global Change Science 2:207−224

doi: 10.1016/S1465-9972(99)00056-2
[49]

Intergovernmental Panel on Climate Change (IPCC). 2022. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Cambridge: Cambridge University Press. doi: 10.1017/9781009157988

[50]

Mofijul Islam SM, Gaihre YK, Biswas JC, Singh U, Ahmed MN, et al. 2018. Nitrous oxide and nitric oxide emissions from lowland rice cultivation with urea deep placement and alternate wetting and drying irrigation. Scientific Reports 8:17623

doi: 10.1038/s41598-018-35939-7
[51]

Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S. 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368:20130122

doi: 10.1098/rstb.2013.0122
[52]

Sörgel M, Regelin E, Bozem H, Diesch JM, Drewnick F, et al. 2011. Quantification of the unknown HONO daytime source and its relation to NO2. Atmospheric Chemistry and Physics 11:10433−10447

doi: 10.5194/acp-11-10433-2011
[53]

Yamulki S, Harrison RM, Goulding KWT, Webster CP. 1997. N2O, NO and NO2 fluxes from a grassland: effect of soil pH. Soil Biology and Biochemistry 29:1199−1208

doi: 10.1016/S0038-0717(97)00032-1
[54]

Ma YY, Tong C, Wang WQ. 2013. Variations of methane and nitrous oxide fluxes in the fields of two rice varieties in the Fuzhou plain. Wetland Science 11:246−253

[55]

Yan X, Du L, Shi S, Xing G. 2000. Nitrous oxide emission from wetland rice soil as affected by the application of controlled-availability fertilizers and mid-season aeration. Biology and Fertility of Soils 32:60−66

doi: 10.1007/s003740000215
[56]

Yao Y, Zhang M, Tian Y, Zhao M, Zhang B, et al. 2017. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production. Field Crops Research 214:273−282

doi: 10.1016/j.fcr.2017.09.021
[57]

Liu W, Xu J, Li Y, Liu X, Zhou X, et al. 2024. Duckweed (Lemna minor L.) as a natural-based solution completely offsets the increase in ammonia volatilization induced by soil drying and wetting cycles in irrigated paddies. Science of The Total Environment 957:177789

doi: 10.1016/j.scitotenv.2024.177789
[58]

Wang S, Shan J, Xia Y, Tang Q, Xia L, et al. 2017. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons. Science of The Total Environment 593−594:347−356

doi: 10.1016/j.scitotenv.2017.03.159
[59]

Yamulki S, Harrison RM, Goulding KWT. 1996. Ammonia surface-exchange above an agricultural field in Southeast England. Atmospheric Environment 30:109−118

doi: 10.1016/1352-2310(95)00233-O
[60]

Zhang Y, Han X, He N, Long M, Huang J, et al. 2014. Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmospheric Environment 84:156−162

doi: 10.1016/j.atmosenv.2013.11.052
[61]

Sun L, Lu Y, Kronzucker HJ, Shi W. 2016. Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification. Journal of Plant Physiology 198:81−88

doi: 10.1016/j.jplph.2016.04.010
[62]

Verhamme DT, Prosser JI, Nicol GW. 2011. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. The ISME Journal 5:1067−1071

doi: 10.1038/ismej.2010.191
[63]

Appenroth KJ, Sree KS, Böhm V, Hammann S, Vetter W, et al. 2017. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chemistry 217:266−273

doi: 10.1016/j.foodchem.2016.08.116
[64]

Hu Z, Chen S, Wei C, Jin Y, Zhao L, et al. 2025. Plastidic glutamine synthetase (GS2) enhances nitrogen assimilation and protein production in duckweed using urea nitrogen source. International Journal of Biological Macromolecules 307:141701

doi: 10.1016/j.ijbiomac.2025.141701
[65]

Shrestha RC, Ghazaryan L, Poodiack B, Zorin B, Gross A, et al. 2022. The effects of microalgae-based fertilization of wheat on yield, soil microbiome and nitrogen oxides emissions. Science of The Total Environment 806:151320

doi: 10.1016/j.scitotenv.2021.151320
[66]

Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, et al. 2011. Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333:1616−1618

doi: 10.1126/science.1207687
[67]

Bhattarai HR, Virkajärvi P, Yli-Pirilä P, Maljanen M. 2018. Emissions of atmospherically important nitrous acid (HONO) gas from northern grassland soil increases in the presence of nitrite (NO2). Agriculture, Ecosystems & Environment 256:194−199

doi: 10.1016/j.agee.2018.01.017
[68]

Tang K, Qin M, Han B, Shao D, Xu Z, et al. 2024. Identifying the influencing factors of soil nitrous acid emissions using random forest model. Atmospheric Environment 339:120875

doi: 10.1016/j.atmosenv.2024.120875
[69]

Panaretou V, Vakalis S, Ntolka A, Sotiropoulos A, Moustakas K, et al. 2019. Assessing the alteration of physicochemical characteristics in composted organic waste in a prototype decentralized composting facility. Environmental Science and Pollution Research 26:20232−20247

doi: 10.1007/s11356-019-05307-7
[70]

Pokharel P, Chang SX. 2021. Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. Journal of Environmental Management 295:113080

doi: 10.1016/j.jenvman.2021.113080
[71]

Schimel J, Balser TC, Wallenstein M. 2007. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88:1386−1394

doi: 10.1890/06-0219
[72]

Song Y, Wu D, Ju X, Dörsch P, Wang M, et al. 2023. Nitrite stimulates HONO and NOx but not N2O emissions in Chinese agricultural soils during nitrification. Science of The Total Environment 902:166451

doi: 10.1016/j.scitotenv.2023.166451
[73]

Cheng X, Dong Y, Fan F, Xiao S, Liu J, et al. 2023. Shifts in the high-resolution spatial distribution of dissolved N2O and the underlying microbial communities and processes in the Pearl River Estuary. Water Research 243:120351

doi: 10.1016/j.watres.2023.120351
[74]

Corrochano-Monsalve M, Huérfano X, Menéndez S, Torralbo F, Fuertes-Mendizábal T, et al. 2020. Relationship between tillage management and DMPSA nitrification inhibitor efficiency. Science of The Total Environment 718:134748

doi: 10.1016/j.scitotenv.2019.134748
[75]

Li Z, Zeng Z, Song Z, Tian D, Huang X, et al. 2022. Variance and main drivers of field nitrous oxide emissions: a global synthesis. Journal of Cleaner Production 353:131686

doi: 10.1016/j.jclepro.2022.131686
[76]

Qiu W, Liu J, Li B, Wang Z. 2020. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N, and bacterial community. Environmental Science and Pollution Research 27:8673−8683

doi: 10.1007/s11356-019-07534-4
[77]

Shaaban M, Peng QA, Bashir S, Wu Y, Younas A, et al. 2019. Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil. Journal of Environmental Management 250:109535

doi: 10.1016/j.jenvman.2019.109535
[78]

Zhang Z, Wang J, Huang W, Chen J, Wu F, et al. 2022. Cover crops and N fertilization affect soil ammonia volatilization and N2O emission by regulating the soil labile carbon and nitrogen fractions. Agriculture, Ecosystems & Environment 340:108188

doi: 10.1016/j.agee.2022.108188
[79]

Zimmo OR, van der Steen NP, Gijzen HJ. 2003. Comparison of ammonia volatilisation rates in algae and duckweed-based waste stabilisation ponds treating domestic wastewater. Water Research 37:4587−4594

doi: 10.1016/j.watres.2003.08.013
[80]

Caicedo JR, van der Steen NP, Arce O, Gijzen HJ. 2000. Effect of total ammonia nitrogen concentration and pH on growth rates of duckweed (Spirodela polyrrhiza). Water Research 34:3829−3835

doi: 10.1016/S0043-1354(00)00128-7
[81]

Bollmann A, Conrad R. 1998. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Global Change Biology 4:387−396

doi: 10.1046/j.1365-2486.1998.00161.x
[82]

Kraft B, Tegetmeyer HE, Sharma R, Klotz MG, Ferdelman TG, et al. 2014. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345:676−679

doi: 10.1126/science.1254070
[83]

Lu Y, Tao Y, Yin B, Li Y, Tucker C, et al. 2022. Nitrogen deposition stimulated winter nitrous oxide emissions from bare sand more than biological soil crusts in cold desert ecosystem. Science of The Total Environment 841:156779

doi: 10.1016/j.scitotenv.2022.156779
[84]

Peng B, Sun J, Liu J, Xia Z, Dai W. 2021. Relative contributions of different substrates to soil N2O emission and their responses to N addition in a temperate forest. Science of The Total Environment 767:144126

doi: 10.1016/j.scitotenv.2020.144126
[85]

Kapoor V, Li X, Chandran K, Impellitteri CA, Domingo JWS. 2016. Use of functional gene expression and respirometry to study wastewater nitrification activity after exposure to low doses of copper. Environmental Science and Pollution Research 23:6443−6450

doi: 10.1007/s11356-015-5843-2
[86]

Shi X, Tan W, Tang S, Ling Q, Tang C, et al. 2023. Metagenomics reveals taxon-specific responses of soil nitrogen cycling under different fertilization regimes in heavy metal contaminated soil. Journal of Environmental Management 345:118766

doi: 10.1016/j.jenvman.2023.118766
[87]

Zhang Y, Xu J, Dong X, Wang J, Liu C, et al. 2024. Optimization of nitrogen removal conditions based on response surface methodology and nitrogen removal pathway of Paracoccus sp. QD-19. Science of The Total Environment 908:168348

doi: 10.1016/j.scitotenv.2023.168348
[88]

Song D, Liu C, Sun Z, Liu Q, Wang P, et al. 2020. Tailoring the distribution of microbial communities and gene expressions to achieve integrating nitrogen transformation in a gravity-driven submerged membrane bioreactor. Water Research 187:116382

doi: 10.1016/j.watres.2020.116382
[89]

Thompson RL, Lassaletta L, Patra PK, Wilson C, Wells KC, et al. 2019. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nature Climate Change 9:993−998

doi: 10.1038/s41558-019-0613-7
[90]

Zhang X, Davidson EA, Mauzerall DL, Searchinger TD, Dumas P, et al. 2015. Managing nitrogen for sustainable development. Nature 528:51−59

doi: 10.1038/nature15743
[91]

Zhang X, Gu L, Gui D, Xu B, Li R, et al. 2024. Suitable biochar application practices simultaneously alleviate N2O and NH3 emissions from arable soils: a meta-analysis study. Environmental Research 242:117750

doi: 10.1016/j.envres.2023.117750
[92]

Xu J, Cui W, Cheng JJ, Stomp AM. 2011. Production of high-starch duckweed and its conversion to bioethanol. Biosystems Engineering 110:67−72

doi: 10.1016/j.biosystemseng.2011.06.007
[93]

Song Y, Tan M, Zhang Y, Li X, Liu P, et al. 2024. Effect of fertilizer deep placement and nitrification inhibitor on N2O, NO, HONO, and NH3 emissions from a maize field in the North China Plain. Atmospheric Environment 334:120684

doi: 10.1016/j.atmosenv.2024.120684
[94]

Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, et al. 2014. Biochar's role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agriculture, Ecosystems & Environment 191:5−16

doi: 10.1016/j.agee.2013.10.009
[95]

Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, et al. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889−892

doi: 10.1126/science.1136674
[96]

Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1:636−639

doi: 10.1038/ngeo325
[97]

Tian D, Niu S. 2015. A global analysis of soil acidification caused by nitrogen addition. Environmental Research Letters 10:024019

doi: 10.1088/1748-9326/10/2/024019
[98]

Wang Y, Chen X, Guo B, Liu C, Liu J, et al. 2023. Alleviation of aqueous nitrogen loss from paddy fields by growth and decomposition of duckweed (Lemna minor L.) after fertilization. Chemosphere 311:137073

doi: 10.1016/j.chemosphere.2022.137073
[99]

Zhao Y, Zhang L, Chen Y, Liu X, Xu W, et al. 2017. Atmospheric nitrogen deposition to China: a model analysis on nitrogen budget and critical load exceedance. Atmospheric Environment 153:32−40

doi: 10.1016/j.atmosenv.2017.01.018
[100]

Zhang W, Li H, Li Y. 2019. Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs. Science of The Total Environment 656:1108−1120

doi: 10.1016/j.scitotenv.2018.11.450
[101]

Intergovernmental Panel on Climate Change. 2023. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. doi: 10.1017/9781009157896

[102]

Pasos-Panqueva J, Baker A, Camargo-Valero MA. 2024. Unravelling the impact of light, temperature and nutrient dynamics on duckweed growth: a meta-analysis study. Journal of Environmental Management 366:121721

doi: 10.1016/j.jenvman.2024.121721
[103]

Ahmed Z, Liu W, Xu J, Li Y, Majeed Z. 2025. Influence of alternate wetting and drying and duckweed on zooplankton abundance in rice paddy ecosystem. Journal of Environmental Management 383:125433

doi: 10.1016/j.jenvman.2025.125433
[104]

Lebrun MN, Dorber M, Verones F, Henderson AD. 2025. Novel endpoint characterization factors for life cycle impact assessment of terrestrial acidification. Ecological Indicators 171:113241

doi: 10.1016/j.ecolind.2025.113241
[105]

Pihl Karlsson G, Akselsson C, Hellsten S, Karlsson PE. 2024. Atmospheric deposition and soil water chemistry in Swedish forests since 1985 – Effects of reduced emissions of sulphur and nitrogen. Science of The Total Environment 913:169734

doi: 10.1016/j.scitotenv.2023.169734
[106]

Jing LQ, Li F, Zhao TH, Wang XK, Zhao FC, et al. 2023. Research progress on the carbon and nitrogen sink of duckweed growing in paddy and its effects on rice yield. Scientia Agricultura Sinica 56:4717−4728

doi: 10.3864/j.issn.0578-1752.2023.23.013
[107]

Ren C, Huang X, Wang Y, Zhang L, Zhou X, et al. 2025. Enhanced soil emissions of reactive nitrogen gases by fertilization and their impacts on secondary air pollution in eastern China. Environmental Science & Technology 59:5119−5130

doi: 10.1021/acs.est.4c12324
[108]

Hong C, Wang Z, Wang Y, Zong X, Qiang X, et al. 2024. Response of duckweed to different irrigation modes under different fertilizer types and rice varieties: unlocking the potential of duckweed (Lemna minor L.) in rice cultivation as "fertilizer capacitors". Agricultural Water Management 292:108681

doi: 10.1016/j.agwat.2024.108681
[109]

Chu Q, Xu S, Xue L, Liu Y, Feng Y, et al. 2020. Bentonite hydrochar composites mitigate ammonia volatilization from paddy soil and improve nitrogen use efficiency. Science of The Total Environment 718:137301

doi: 10.1016/j.scitotenv.2020.137301