[1]

Pietrysiak E, Smith S, Ganjyal GM. 2019. Food safety interventions to control Listeria monocytogenes in the fresh apple packing industry: a review. Comprehensive Reviews in Food Science and Food Safety 18:1705−26

doi: 10.1111/1541-4337.12496
[2]

Fan X, Gurtler JB, Mattheis JP. 2023. Possible sources of Listeria monocytogenes contamination of fresh-cut apples and antimicrobial interventions during antibrowning treatments: a review. Journal of Food Protection 86:100100

doi: 10.1016/j.jfp.2023.100100
[3]

Haïssam JM. 2011. Pichia anomala in biocontrol for apples: 20 years of fundamental research and practical applications. Antonie van Leeuwenhoek 99:93−105

doi: 10.1007/s10482-010-9541-2
[4]

Khadiri M, Boubaker H, Lahmamsi H, Taoussi M, Ezzouggari R, et al. 2024. Challenges in apple preservation: Fungicide resistance and emerging biocontrols. Physiological and Molecular Plant Pathology 129:102205

doi: 10.1016/j.pmpp.2023.102205
[5]

Argenta LC, de Freitas ST, Mattheis JP, Vieira MJ, Ogoshi C, et al. 2021. Characterization and quantification of postharvest losses of apple fruit stored under commercial conditions. HortScience 56(5):608−16

doi: 10.21273/HORTSCI15771-21
[6]

Kader AA. 2005. Increasing food availability by reducing postharvest losses of fresh produce. Acta Horticulturae 682:2169−76

doi: 10.17660/actahortic.2005.682.296
[7]

Nieuwenhuijsen MJ, Toledano MB, Elliott P. 2000. Uptake of chlorination disinfection by-products; a review and a discussion of its implications for exposure assessment in epidemiological studies. Journal of Exposure Science & Environmental Epidemiology 10:586−99

doi: 10.1038/sj.jea.7500139
[8]

Sheng L, Shen X, Su Y, Korany A, Knueven CJ, et ak. 2020. The efficacy of sodium acid sulfate on controlling Listeria monocytogenes on apples in a water system with organic matter. Food Microbiology 92:103595

doi: 10.1016/j.fm.2020.103595
[9]

Kabelitz T, Hassenberg K. 2018. Control of apple surface microflora for fresh-cut produce by post-harvest hot-water treatment. LWT 98:492−9

doi: 10.1016/j.lwt.2018.08.062
[10]

And MA, Yousef AE. 2001. Efficacy of Ozone Against Escherichia coli O157: H7 on Apples. Journal of Food Science 66:1380−1384

doi: 10.1111/j.1365-2621.2001.tb15218.x
[11]

de Oliveira EF, Tikekar R, Nitin N. 2018. Combination of aerosolized curcumin and UV-A light for the inactivation of bacteria on fresh produce surfaces. Food Research International 114:133−39

doi: 10.1016/j.foodres.2018.07.054
[12]

Wang J, Wu Z. 2022. Combined use of ultrasound-assisted washing with in-package atmospheric cold plasma processing as a novel non-thermal hurdle technology for ready-to-eat blueberry disinfection. Ultrasonics Sonochemistry 84:105960

doi: 10.1016/j.ultsonch.2022.105960
[13]

International Organization for Standardization (ISO). 2017. Fine Bubble Technology—General Principles for Usage and Measurement of Fine Bubbles. Part 1: Terminology. ISO 20480-1.2017. www.iso.org/standard/68187.html

[14]

Javed M, Matloob A, Ettoumi FE, Sheikh AR, Zhang R, et al. 2023. Novel nanobubble technology in food science: application and mechanism. Food Innovation and Advances 2:135−44

doi: 10.48130/FIA-2023-0014
[15]

Zhang H, Tikekar RV. 2021. Air microbubble assisted washing of fresh produce: Effect on microbial detachment and inactivation. Postharvest Biology and Technology 181:111687

doi: 10.1016/j.postharvbio.2021.111687
[16]

Klintham P, Tongchitpakdee S, Chinsirikul W, Mahakarnchanakul W. 2017. Combination of microbubbles with oxidizing sanitizers to eliminate Escherichia coli and Salmonella Typhimurium on Thai leafy vegetables. Food Control 77:260−9

doi: 10.1016/j.foodcont.2017.02.030
[17]

Agarwal A, Ng WJ, Liu Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84:1175−80

doi: 10.1016/j.chemosphere.2011.05.054
[18]

Wang C, Lin CY, Liao GY. 2021. Feasibility Study of Tetracycline Removal by Ozonation Equipped with an Ultrafine-Bubble Compressor. Water 13:1058

doi: 10.3390/w13081058
[19]

Ikeura H, Hamasaki S, Tamaki M. 2013. Effects of ozone microbubble treatment on removal of residual pesticides and quality of persimmon leaves. Food chemistry 1381:366−71

doi: 10.1016/j.foodchem.2012.09.139
[20]

Shih IL, Shen MH, Van YT. 2006. Microbial synthesis of poly(ε-lysine) and its various applications. Bioresource Technology 97:1148−59

doi: 10.1016/j.biortech.2004.08.012
[21]

Padilla-Garfias F, Ríos-Cifuentes L, Sánchez NS, Calahorra M, Peña A. 2022. Study of the mechanism of ε-poly-l-lysine as an antifungal on Candida albicans and Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - General Subjects 1866(10):130197

doi: 10.1016/j.bbagen.2022.130197
[22]

Rodrigues B, Morais TP, Zaini PA, Campos CS, Almeida-Souza HO, et al. 2020. Antimicrobial activity of Epsilon-Poly-L-lysine against phytopathogenic bacteria. Scientific Reports 10:11324

doi: 10.1038/s41598-020-68262-1
[23]

U. S. Food and Drug Administration. 2010. ε-Polylysine GRAS notice (no. 000135). https://hfpappexternal.fda.gov/scripts/fdcc/index.cfm?set=GRASNotices&id=135

[24]

Zhou K, Sontti SG, Zhou J, Esmaeili P, Zhang X. 2022. Microbubble-enhanced bitumen separation from tailing slurries with high solid contents. Industrial & Engineering Chemistry Research 61:17327−41

doi: 10.1021/acs.iecr.2c03271
[25]

Ma Y, Liu X, Zheng J, Huang M, Hou J, et al. 2024. Detection of organophosphorus pesticides by a fluorescent sensing assay coupled with enzyme inhibition. Journal of Food Composition and Analysis 129:106139

doi: 10.1016/j.jfca.2024.106139
[26]

Ma P, Han C, He Q, Miao Z, Gao M, et al. 2023. Oxidation of Congo red by Fenton coupled with micro and nanobubbles. Environmental Technology 44:2539−48

doi: 10.1080/09593330.2022.2036245
[27]

Nirmalkar N, Pacek AW, Barigou M. 2018. On the existence and stability of bulk nanobubbles. Langmuir 34:10964−73

doi: 10.1021/acs.langmuir.8b01163
[28]

Zhou Y, Han Z, He C, Feng Q, Wang K, et al. 2021. Long-term stability of different kinds of gas nanobubbles in deionized and salt water. Materials 14:1808

doi: 10.3390/ma14071808
[29]

Ostolska I, Wiśniewska M. 2014. Application of the zeta potential measurements to explanation of colloidal Cr2O3 stability mechanism in the presence of the ionic polyamino acids. Colloid and Polymer Science 292:2453−64

doi: 10.1007/s00396-014-3276-y
[30]

Nirmalkar N, Pacek AW, Barigou M. 2018. Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter 14:9643−56

doi: 10.1039/C8SM01949E
[31]

Lavaisse LM, Hollmann A, Nazareno MA, Disalvo EA. 2019. Zeta potential changes of Saccharomyces cerevisiae during fermentative and respiratory cycles. Colloids and Surfaces B: Biointerfaces 174:63−9

doi: 10.1016/j.colsurfb.2018.11.001
[32]

Singh A, Sekhon AS, Unger P, Babb M, Yang Y, et al. 2021. Impact of gas micro-nano-bubbles on the efficacy of commonly used antimicrobials in the food industry. Journal of Applied Microbiology 130:1092−105

doi: 10.1111/jam.14840
[33]

Pietrysiak E, Ganjyal GM. 2018. Apple peel morphology and attachment of Listeria innocua through aqueous environment as shown by scanning electron microscopy. Food Control 92:362−69

doi: 10.1016/j.foodcont.2018.04.049
[34]

Xia Y, Wang L, Zhang R, Yang Z, Xing Y, et al. 2019. Enhancement of flotation response of fine low-rank coal using positively charged microbubbles. Fuel 245:505−13

doi: 10.1016/j.fuel.2019.02.092
[35]

Dou Y, Routledge MN, Gong Y, Godana EA, Dhanasekaran S, et al. 2021. Efficacy of epsilon-poly-L-lysine inhibition of postharvest blue mold in apples and potential mechanisms. Postharvest Biology and Technology 171:111346

doi: 10.1016/j.postharvbio.2020.111346
[36]

Phornvillay S, Yodsarn S, Oonsrithong J, Srilaong V, Pongprasert N. 2022. A novel technique using advanced oxidation process (UV-C/H2O2) combined with micro-nano bubbles on decontamination, seed viability, and enhancing phytonutrients of roselle microgreens. Horticulturae 8:53

doi: 10.3390/horticulturae8010053
[37]

Chang A, Niu B, Liu J, Han H, Zhang Z, et al. 2023. Enrichment of surface charge contributes to the stability of surface nanobubbles. Particuology 56:608−16

[38]

Zhao M, Yang L, Chen F, Zhuang J. 2024. Bacterial transport mediated by micro-nanobubbles in porous media. Water Research 258:121771

doi: 10.1016/j.watres.2024.121771
[39]

Du Y, Huang X, Yuan S, Yu H, Guo Y, et al. 2025. Cold plasma and honey synergistically inhibit polyphenol oxidase to enhance fresh-cut apple preservation. Food Chemistry 468:142490

doi: 10.1016/j.foodchem.2024.142490
[40]

Ikeura H, Kobayashi F, Tamaki M. 2011. Removal of residual pesticides in vegetables using ozone microbubbles. Journal of Hazardous Materials 186:956−59

doi: 10.1016/j.jhazmat.2010.11.094
[41]

Li C, Xie Y, Guo Y, Cheng Y, Yu H, et al. 2021. Effects of ozone-microbubble treatment on the removal of residual pesticides and the adsorption mechanism of pesticides onto the apple matrix. Food Control 120:107548

doi: 10.1016/j.foodcont.2020.107548
[42]

Rutkowska E, Wołejko E, Kaczyński P, Łuniewski S, Łozowicka B. 2023. High and low temperature processing: Effective tool reducing pesticides in/on apple used in a risk assessment of dietary intake protocol. Chemosphere 313:137498

doi: 10.1016/j.chemosphere.2022.137498
[43]

Lee U, Joo S, Klopfenstein NB, Kim MS. 2016. Efficacy of washing treatments in the reduction of post-harvest decay of chestnuts (Castanea crenata 'Tsukuba') during storage. Canadian Journal of Plant Science 96:1−5

doi: 10.1139/cjps-2015-0089
[44]

Wang X, Zuo J, Yan Z, Shi J, Wang Q, et al. 2020. Effect of ozone micro-nano-bubble treatment on postharvest preservation of spinach. Food Science 41(23):190−96

doi: 10.7506/spkx1002-6630-20191102-014
[45]

Han Q, Liu F, Hao Y, Ni Y. 2020. Characterization of membrane-bound polyphenol oxidase from Granny Smith apple (Malus × domestica Borkh.). International Journal of Biological Macromolecules 158:977−84

doi: 10.1016/j.ijbiomac.2020.04.225
[46]

Král M, Ošťádalová M, Tremlová B. 2017. Effect of storage on textural and sensory properties of Czech apple cultivars. Erwerbs-Obstbau 59:39−43

doi: 10.1007/s10341-016-0294-6
[47]

Ullah F, Hasrat K, Iqbal S, Hussain I, Hussain A, et al. 2021. An approach to evaluate dehydration of apples (Malus Domestica L.) with the effect of temperature and time interval under the response surface method. International Journal of Fruit Science 21:657−69

doi: 10.1080/15538362.2021.1920553