[1]

Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163(1):5−20

doi: 10.1104/pp.113.222737
[2]

Bernard A, Joubès J. 2013. Arabidopsis cuticular waxes: advances in synthesis, export and regulation. Progress in Lipid Research 52(1):110−29

doi: 10.1016/j.plipres.2012.10.002
[3]

Li F, Wu X, Lam P, Bird D, Zheng H, et al. 2008. Identification of the wax ester synthase/acyl-Coenzyme A: diacylglycerol acyltransferase WSD1 required for stem wax ester biosynthesis in Arabidopsis. Plant Physiology 148(1):97−107

doi: 10.1104/pp.108.123471
[4]

Li T, Sun Y, Liu T, Wu H, An P, et al. 2019. TaCER1-1A is involved in cuticular wax alkane biosynthesis in hexaploid wheat and responds to plant abiotic stresses. Plant, Cell & Environment 42(11):3077−91

doi: 10.1111/pce.13614
[5]

Xie J, Yang L, Hu W, Song J, Kuang L, et al. 2025. The CsMYB44-csi-miR0008-CsCER1 module regulates cuticular wax biosynthesis and drought tolerance in citrus. New Phytologist 246(4):1757−79

doi: 10.1111/nph.70088
[6]

Jiang Y, Li Z, Liu X, Zhu T, Xie K, et al. 2021. ZmFAR1 and ZmABCG26 regulated by microRNA are essential for lipid metabolism in maize anther. International Journal of Molecular Sciences 22(15):7916

doi: 10.3390/ijms22157916
[7]

Liu Y, Chen B, Qin Z, Jiang P, Yang Y, et al. 2025. TaFAR5-TaFAR3 module regulates cuticular wax biosynthesis and drought tolerance in wheat. New Phytologist 248:1802−21

doi: 10.1111/nph.70512
[8]

Hen-Avivi S, Savin O, Racovita RC, Lee WS, Adamski NM, et al. 2016. A metabolic gene cluster in the wheat W1 and the barley Cer-cqu loci determines β-diketone biosynthesis and glaucousness. The Plant Cell 28(6):1440−60

doi: 10.1105/tpc.16.00197
[9]

Jiang Y, Su S, Chen H, Li S, Shan X, et al. 2023. Transcriptome analysis of drought-responsive and drought-tolerant mechanisms in maize leaves under drought stress. Physiologia Plantarum 175(2):e13875

doi: 10.1111/ppl.13875
[10]

Li F, Zhang X, Wang J, Jiang Y, Zhang X, et al. 2022. Preharvest application of 1-methylcyclopropene and Ethephon altered cuticular wax biosynthesis and fruit quality of apples at harvest and during cold storage. Horticultural Plant Journal 8(2):143−52

doi: 10.1016/j.hpj.2021.11.008
[11]

Yan D, Yang Y, Wang C, Qi Y, Liu C, et al. 2018. Effects of epigallocatechin-3-gallate (EGCG) on skin greasiness and related gene expression in 'Jonagold' apple fruit during ambient storage. Postharvest Biology and Technology 143:28−34

doi: 10.1016/j.postharvbio.2018.04.006
[12]

Jiang Z, Ding Y, Liu J, Yin W, Qi Y, et al. 2022. The MdFAD27 and MdFAD28 play critical roles in the development of greasiness disorder in postharvest apples. Postharvest Biology and Technology 191:111990

doi: 10.1016/j.postharvbio.2022.111990
[13]

Romero P, Lafuente MT. 2022. Ethylene-driven changes in epicuticular wax metabolism in citrus fruit. Food Chemistry 372:131320

doi: 10.1016/j.foodchem.2021.131320
[14]

Bai MY, Shang JX, Oh E, Fan M, Bai Y, et al. 2012. Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biology 14(8):810−17

doi: 10.1038/ncb2546
[15]

Li QF, Wang C, Jiang L, Li S, Sun SSM, et al. 2012. An interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Science Signaling 5(244):ra72

doi: 10.1126/scisignal.2002908
[16]

Lozano-Durán R, Macho AP, Boutrot F, Segonzac C, Somssich IE, et al. 2013. The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife 2:e00983

doi: 10.7554/eLife.00983
[17]

Wu H, Liu L, Chen Y, Liu T, Jiang Q, et al. 2022. Tomato SlCER1–1 catalyzes the synthesis of wax alkanes, increasing drought tolerance and fruit storability. Horticulture Research 9:uhac004

doi: 10.1093/hr/uhac004
[18]

Chen D, Wang T, Huang H, Zhang Q, Chen X, et al. 2024. SlCNR regulates postharvest water loss and wax accumulation in tomato fruit and directly represses the transcription of very-long-chain (VLC) alkane biosynthesis-related genes SlCER1-2 and SlCER6. Postharvest Biology and Technology 208:112641

doi: 10.1016/j.postharvbio.2023.112641
[19]

Xiong C, Xie Q, Yang Q, Sun P, Gao S, et al. 2020. WOOLLY, interacting with MYB transcription factor MYB31, regulates cuticular wax biosynthesis by modulating CER6 expression in tomato. The Plant Journal 103(1):323−37

doi: 10.1111/tpj.14733
[20]

Leide J, Hildebrandt U, Reussing K, Riederer M, Vogg G. 2007. The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: effects of a deficiency in a β-ketoacyl-coenzyme a synthase (LeCER6). Plant Physiology 144(3):1667−79

doi: 10.1104/pp.107.099481
[21]

Mo F, Xue X, Wang J, Wang J, Cheng M, et al. 2025. Genome-wide analysis of KCS genes in tomato and functional characterization of SlKCS8 and SlKCS10 in drought tolerance. Plant Physiology and Biochemistry 222:109783

doi: 10.1016/j.plaphy.2025.109783
[22]

Li R, Sun S, Wang H, Wang K, Yu H, et al. 2020. FIS1 encodes a GA2-oxidase that regulates fruit firmness in tomato. Nature Communications 11(1):5844

doi: 10.1038/s41467-020-19705-w
[23]

Wu P, Li S, Yu X, Guo S, Gao L. 2024. Identification of long-chain acyl-CoA synthetase gene family reveals that SlLACS1 is essential for cuticular wax biosynthesis in tomato. International Journal of Biological Macromolecules 277:134438

doi: 10.1016/j.ijbiomac.2024.134438
[24]

Martin LBB, Romero P, Fich EA, Domozych DS, Rose JKC. 2017. Cuticle biosynthesis in tomato leaves is developmentally regulated by abscisic acid. Plant Physiology 174(3):1384−98

doi: 10.1104/pp.17.00387
[25]

Haliński ŁP, Kalkowska M, Kalkowski M, Piorunowska J, Topolewska A, et al. 2015. Cuticular wax variation in the tomato (Solanum lycopersicum L.), related wild species and their interspecific hybrids. Biochemical Systematics and Ecology 60:215−24

doi: 10.1016/j.bse.2015.04.030
[26]

Ding F, Wang G, Wang M, Zhang S. 2018. Exogenous melatonin improves tolerance to water deficit by promoting cuticle formation in Tomato plants. Molecules 23(7):1605

doi: 10.3390/molecules23071605
[27]

Liu M, Zhang Z, Xu Z, Wang L, Chen C, et al. 2020. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato. Plant Cell Reports 40(1):43−58

doi: 10.1007/s00299-020-02609-w
[28]

Zhang X, Zhang X, Sun W, Lü M, Gu Y, et al. 2025. MdERF2 regulates cuticle wax formation by directly activating MdLACS2, MdCER1 and MdCER6 of apple fruit during postharvest. Journal of Integrative Agriculture 24(6):2229−39

doi: 10.1016/j.jia.2024.11.033
[29]

Cao F, Qian Q, Li Z, Wang J, Liu Z, et al. 2025. Natural variation in an HD-ZIP factor identifies its role in controlling apple leaf cuticular wax deposition. Developmental Cell 60:949−964.e6

doi: 10.1016/j.devcel.2024.12.001
[30]

Lv M, Zhang X, Shang J, Zhang Y, Gu Y, et al. 2025. Synergistic impact of MdERF2 and MdPUB17 on the biosynthesis of wax in apple epidermis. Horticultural Plant Journal 11(4):1429−39

doi: 10.1016/j.hpj.2024.09.007
[31]

Sun Y, Zhang X, Jiang Y, Wang J, Li B, et al. 2022. Roles of ERF2 in apple fruit cuticular wax synthesis. Scientia Horticulturae 301:111144

doi: 10.1016/j.scienta.2022.111144
[32]

Chai Y, Li A, Wai S, Song C, Zhao Y, et al. 2020. Cuticular wax composition changes of 10 apple cultivars during postharvest storage. Food Chemistry 324:126903

doi: 10.1016/j.foodchem.2020.126903
[33]

Klein B, Thewes FR, de Oliveir AR, Brackmann A, Barin JS, et al. 2019. Development of dispersive solvent extraction method to determine the chemical composition of apple peel wax. Food Research International 116:611−19

doi: 10.1016/j.foodres.2018.08.080
[34]

Wang Y, Liu Y, Pan X, Wan Y, Li Z, et al. 2023. A 3-ketoacyl-CoA synthase 10 (KCS10) homologue from alfalfa enhances drought tolerance by regulating cuticular wax biosynthesis. Journal of Agricultural and Food Chemistry 71(40):14493−504

doi: 10.1021/acs.jafc.3c03881
[35]

Andre CM, Legay S, Deleruelle A, Nieuwenhuizen N, Punter M, et al. 2016. Multifunctional oxidosqualene cyclases and cytochrome P450 involved in the biosynthesis of apple fruit triterpenic acids. New Phytologist 211(4):1279−94

doi: 10.1111/nph.13996
[36]

Xu H, Wang N, Liu J, Qu C, Wang Y, et al. 2017. The molecular mechanism underlying anthocyanin metabolism in apple using the MdMYB16 and MdbHLH33 genes. Plant Molecular Biology 94(1−2):149−65

doi: 10.1007/s11103-017-0601-0
[37]

Zhang YL, Tian Y, Man YY, Zhang CL, Wang Y, et al. 2023. Apple SUMO E3 ligase MdSIZ1 regulates cuticular wax biosynthesis by SUMOylating transcription factor MdMYB30. Plant Physiology 191(3):1771−88

doi: 10.1093/plphys/kiad007
[38]

Yang Y, Zhou B, Zhang J, Wang C, Liu C, et al. 2017. Relationships between cuticular waxes and skin greasiness of apples during storage. Postharvest Biology and Technology 131:55−67

doi: 10.1016/j.postharvbio.2017.05.006
[39]

Man YY, Lv YH, Lv HM, Jiang H, Wang T, et al. 2024. MdDEWAX decreases plant drought resistance by regulating wax biosynthesis. Plant Physiology and Biochemistry 206:108288

doi: 10.1016/j.plaphy.2023.108288
[40]

Yang H, Zhu Z, Zhang M, Li X, Xu R, et al. 2022. CitWRKY28 and CitNAC029 promote the synthesis of cuticular wax by activating CitKCS gene expression in citrus fruit. Plant Cell Reports 41(4):905−20

doi: 10.1007/s00299-021-02826-x
[41]

Romero P, Lafuente MT. 2020. Abscisic acid deficiency alters epicuticular wax metabolism and morphology that leads to increased cuticle permeability during sweet orange (Citrus sinensis) fruit ripening. Frontiers in Plant Science 11:594184

doi: 10.3389/fpls.2020.594184
[42]

Yang H, Zhang M, Li X, Zhu Z, Xu R, et al. 2023. CsERF003, CsMYB7 and CsMYB102 promote cuticular wax accumulation by upregulating CsKCS2 at fruit ripening in Citrus sinensis. Scientia Horticulturae 310:111744

doi: 10.1016/j.scienta.2022.111744
[43]

Wen X, Geng F, Cheng Y, Wang J. 2021. Ectopic expression of CsMYB30 from Citrus sinensis enhances salt and drought tolerance by regulating wax synthesis in Arabidopsis thaliana. Plant Physiology and Biochemistry 166:777−88

doi: 10.1016/j.plaphy.2021.06.045
[44]

Zhang M, Wang J, Liu R, Liu H, Yang H, et al. 2022. CsMYB96 confers resistance to water loss in citrus fruit by simultaneous regulation of water transport and wax biosynthesis. Journal of Experimental Botany 73(3):953−66

doi: 10.1093/jxb/erab420
[45]

Kosma DK, Rice A, Pollard M. 2015. Analysis of aliphatic waxes associated with root periderm or exodermis from eleven plant species. Phytochemistry 117:351−62

doi: 10.1016/j.phytochem.2015.06.011
[46]

Li L, Du Y, He C, Dietrich CR, Li J, et al. 2019. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. Journal of Experimental Botany 70(12):3089−99

doi: 10.1093/jxb/erz131
[47]

Xu L, Hao J, Lv M, Liu P, Ge Q, et al. 2024. A genome-wide association study identifies genes associated with cuticular wax metabolism in maize. Plant Physiology 194(4):2616−30

doi: 10.1093/plphys/kiae007
[48]

Yang Y, Shi J, Chen L, Xiao W, Yu J. 2022. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. Plant Science 321:111256

doi: 10.1016/j.plantsci.2022.111256
[49]

Yu H, Zhang Y, Xie Y, Wang Y, Duan L, et al. 2017. Ethephon improved drought tolerance in maize seedlings by modulating cuticular wax biosynthesis and membrane stability. Journal of Plant Physiology 214:123−33

doi: 10.1016/j.jplph.2017.04.008
[50]

Castorina G, Domergue F, Consonni G. 2025. Genetic interaction between GL15 and FDL1 modulates juvenile cuticle deposition and leaf permeability in maize. Journal of Experimental Botany 00:eraf265

doi: 10.1093/jxb/eraf265
[51]

Zheng J, He C, Qin Y, Lin G, Park WD, et al. 2019. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. The Plant Journal 97(3):530−42

doi: 10.1111/tpj.14140
[52]

Xu X, Dietrich CR, Lessire R, Nikolau BJ, Schnable PS. 2002. The endoplasmic reticulum-associated maize GL8 protein is a component of the acyl-coenzyme a elongase involved in the production of cuticular waxes. Plant Physiology 128(3):924−34

doi: 10.1104/pp.010621
[53]

Lin M, Bacher H, Bourgault R, Qiao P, Matschi S, et al. 2024. Integrative multiomic analysis identifies genes associated with cuticular wax biogenesis in adult maize leaves. G3: Genes, Genomes, Genetics 14:jkae241

doi: 10.1093/g3journal/jkae241
[54]

Shi H, Yu Y, Gu R, Feng C, Fu Y, et al. 2020. Male sterile 305 mutation leads the misregulation of anther cuticle formation by disrupting lipid metabolism in maize. International Journal of Molecular Sciences 21(7):2500

doi: 10.3390/ijms21072500
[55]

Castorina G, Bigelow M, Hattery T, Zilio M, Sangiorgio S, et al. 2023. Roles of the MYB94/FUSED LEAVES1 (ZmFDL1) and GLOSSY2 (ZmGL2) genes in cuticle biosynthesis and potential impacts on Fusarium verticillioides growth on maize silks. Frontiers in Plant Science 14:1228394

doi: 10.3389/fpls.2023.1228394
[56]

Yan Z, Hou J, Leng B, Yao G, Ma C, et al. 2024. Genome-wide identification and characterization of maize long-chain acyl-CoA synthetases and their expression profiles in different tissues and in response to multiple abiotic stresses. Genes 15(8):983

doi: 10.3390/genes15080983
[57]

Mao B, Cheng Z, Lei C, Xu F, Gao S, et al. 2011. Wax crystal-sparse leaf2, a rice homologue of WAX2/GL1, is involved in synthesis of leaf cuticular wax. Planta 235(1):39−52

doi: 10.1007/s00425-011-1481-1
[58]

Wang Y, Wan L, Zhang L, Zhang Z, Zhang H, et al. 2012. An ethylene response factor OsWR1 responsive to drought stress transcriptionally activates wax synthesis related genes and increases wax production in rice. Plant Molecular Biology 78(3):275−88

doi: 10.1007/s11103-011-9861-2
[59]

Islam MA, Du H, Ning J, Ye H, Xiong L. 2009. Characterization of Glossy1 -homologous genes in rice involved in leaf wax accumulation and drought resistance. Plant Molecular Biology 70(4):443−56

doi: 10.1007/s11103-009-9483-0
[60]

Zhou D, Li T, Yang Y, Qu Z, Ouyang L, et al. 2020. OsPLS4 is involved in cuticular wax biosynthesis and affects leaf senescence in rice. Frontiers in Plant Science 11:782

doi: 10.3389/fpls.2020.00782
[61]

Gan L, Zhu S, Zhao Z, Liu L, Wang X, et al. 2017. Wax Crystal-Sparse Leaf 4, encoding a β-ketoacyl-coenzyme A synthase 6, is involved in rice cuticular wax accumulation. Plant Cell Reports 36(10):1655−66

doi: 10.1007/s00299-017-2181-5
[62]

Nguyen VNT, Lee SB, Suh MC, An G, Jung KH. 2018. OsABCG9 is an important ABC transporter of cuticular wax deposition in rice. Frontiers in Plant Science 9:960

doi: 10.3389/fpls.2018.00960
[63]

Wang X, Guan Y, Zhang D, Dong X, Tian L, et al. 2017. A β-ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-like protein as a cofactor. Plant Physiology 173(2):944−55

doi: 10.1104/pp.16.01527
[64]

Zhang D, Yang H, Wang X, Qiu Y, Tian L, et al. 2019. Cytochrome P450 family member CYP96B5 hydroxylates alkanes to primary alcohols and is involved in rice leaf cuticular wax synthesis. New Phytologist 225(5):2094−107

doi: 10.1111/nph.16267
[65]

Tian R, Liu W, Wang Y, Wang W. 2024. Cuticular wax in wheat: biosynthesis, genetics, and the stress response. Frontiers in Plant Science 15:1498505

doi: 10.3389/fpls.2024.1498505
[66]

Wang X, Chen W, Zhi P, Chang C. 2024. Wheat transcription factor TaMYB60 modulates cuticular wax biosynthesis by activating TaFATB and TaCER1 expression. International Journal of Molecular Sciences 25(19):10335

doi: 10.3390/ijms251910335
[67]

Wen H, Wang Y, Wu B, Feng Y, Dang Y, et al. 2021. Analysis of wheat wax regulation mechanism by liposome and transcriptome. Frontiers in Genetics 12:757920

doi: 10.3389/fgene.2021.757920
[68]

Wang X, Fu Y, Liu X, Chang C. 2024. Wheat mixta-like transcriptional activators positively regulate cuticular wax accumulation. International Journal of Molecular Sciences 25(12):6557

doi: 10.3390/ijms25126557
[69]

Liu L, Li H, Wang X, Chang C. 2023. Transcription factor TaMYB30 activates wheat wax biosynthesis. International Journal of Molecular Sciences 24(12):10235

doi: 10.3390/ijms241210235
[70]

Yoshida T, Mogami J, Yamaguchi-Shinozaki K. 2014. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. Current Opinion in Plant Biology 21:133−39

doi: 10.1016/j.pbi.2014.07.009
[71]

Shaheenuzzamn M, Shi S, Sohail K, Wu H, Liu T, et al. 2021. Regulation of cuticular wax biosynthesis in plants under abiotic stress. Plant Biotechnology Reports 15(1):1−12

doi: 10.1007/s11816-020-00656-z
[72]

Bourdenx B, Bernard A, Domergue F, Pascal S, Léger A, et al. 2011. Overexpression of Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses. Plant Physiology 156(1):29−45

doi: 10.1104/pp.111.172320
[73]

Ji X, Dong B, Shiran B, Talbot MJ, Edlington JE, et al. 2011. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiology 156(2):647−62

doi: 10.1104/pp.111.176164
[74]

Melcher K, Ng LM, Zhou XE, Soon FF, Xu Y, et al. 2009. A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462(7273):602−8

doi: 10.1038/nature08613
[75]

Bauer H, Ache P, Lautner S, Fromm J, Hartung W, et al. 2013. The stomatal response to reduced relative humidity requires guard cell - autonomous ABA synthesis. Current Biology 23(1):53−57

doi: 10.1016/j.cub.2012.11.022
[76]

Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22(11):6125

doi: 10.3390/ijms22116125
[77]

Seo PJ, Lee SB, Suh MC, Park MJ, Go YS, et al. 2011. The MYB96 transcription factor regulates cuticular wax biosynthesis under drought conditions in Arabidopsis. The Plant Cell 23(3):1138−52

doi: 10.1105/tpc.111.083485
[78]

He J, Li C, Hu N, Zhu Y, He Z, et al. 2022. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. Plant Physiology 190(3):1640−57

doi: 10.1093/plphys/kiac394
[79]

Dröge-Laser W, Snoek BL, Snel B, Weiste C. 2018. The Arabidopsis bZIP transcription factor family—an update. Current Opinion in Plant Biology 45:36−49

doi: 10.1016/j.pbi.2018.05.001
[80]

Lee HG, Park ME, Park BY, Kim HU, Seo PJ. 2019. The Arabidopsis MYB96 transcription factor mediates ABA-dependent triacylglycerol accumulation in vegetative tissues under drought stress conditions. Plants 8(9):296

doi: 10.3390/plants8090296
[81]

Li H, Guo Y, Cui Q, Zhang Z, Yan X, et al. 2020. Alkanes (C29 and C31)-mediated intracuticular wax accumulation contributes to melatonin- and ABA-induced drought tolerance in watermelon. Journal of Plant Growth Regulation 39(4):1441−50

doi: 10.1007/s00344-020-10099-z
[82]

Gutiérrez C, Figueroa CR, Turner A, Munné-Bosch S, Muñoz P, et al. 2021. Abscisic acid applied to sweet cherry at fruit set increases amounts of cell wall and cuticular wax components at the ripe stage. Scientia Horticulturae 283:110097

doi: 10.1016/j.scienta.2021.110097
[83]

Romero P, Lafuente MT. 2021. The combination of abscisic acid (ABA) and water stress regulates the epicuticular wax metabolism and cuticle properties of detached citrus fruit. International Journal of Molecular Sciences 22(19):10242

doi: 10.3390/ijms221910242
[84]

Lian XY, Gao HN, Jiang H, Liu C, Li YY. 2021. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. Plant Cell Reports 40(12):2357−68

doi: 10.1007/s00299-021-02776-4
[85]

Zhou MM, Yu ZH, Gao HN, Li MR, Wu YT, et al. 2023. Ectopic expression of an apple ABCG transporter gene MdABCG25 increases plant cuticle wax accumulation and abiotic stress tolerance. Fruit Research 3:43

doi: 10.48130/FruRes-2023-0043
[86]

Lian X, Zhao X, Zhao Q, Wang G, Li Y, et al. 2021. MdDREB2A in apple is involved in the regulation of multiple abiotic stress responses. Horticultural Plant Journal 7(3):197−208

doi: 10.1016/j.hpj.2021.03.006
[87]

Liu M, Pirrello J, Chervin C, Roustan JP, Bouzayen M. 2015. Ethylene control of fruit ripening: revisiting the complex network of transcriptional regulation. Plant Physiology 169:2380−90

doi: 10.1104/pp.15.01361
[88]

Lee JG, Eum HL, Lee EJ. 2024. Relationship between skin greasiness and cuticular wax in harvested "Hongro" apples. Food Chemistry 450:139334

doi: 10.1016/j.foodchem.2024.139334
[89]

Wang YW, Nambeesan SU. 2024. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei). BMC Plant Biology 24(1):418

doi: 10.1186/s12870-024-05106-4
[90]

Hu DG, Yu JQ, Han PL, Xie XB, Sun CH, et al. 2019. The regulatory module MdPUB29-MdbHLH3 connects ethylene biosynthesis with fruit quality in apple. New Phytologist 221(4):1966−82

doi: 10.1111/nph.15511
[91]

Zhou X, Miao J, Zhang B, Duan M, Li J, et al. 2022. Cuticular wax metabolism of lemon (Citrus limon Burm. f. Eureka) fruit in response to ethylene and gibberellic acid treatment. Postharvest Biology and Technology 194:112062

doi: 10.1016/j.postharvbio.2022.112062
[92]

Li F, Min D, Ren C, Dong L, Shu P, et al. 2019. Ethylene altered fruit cuticular wax, the expression of cuticular wax synthesis-related genes and fruit quality during cold storage of apple (Malus domestica Borkh. c.v. Starkrimson) fruit. Postharvest Biology and Technology 149:58−65

doi: 10.1016/j.postharvbio.2018.11.016
[93]

García-Rojas M, Morgan A, Gudenschwager O, Zamudio S, Campos-Vargas R, et al. 2016. Biosynthesis of fatty acids-derived volatiles in 'Hass' avocado is modulated by ethylene and storage conditions during ripening. Scientia Horticulturae 202:91−98

doi: 10.1016/j.scienta.2016.02.024
[94]

Cai H, Han S, Jiang L, Yu M, Ma R, et al. 2019. 1-MCP treatment affects peach fruit aroma metabolism as revealed by transcriptomics and metabolite analyses. Food Research International 122:573−84

doi: 10.1016/j.foodres.2019.01.026
[95]

Lara I, Belge B, Goulao LF. 2014. The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology 87:103−12

doi: 10.1016/j.postharvbio.2013.08.012
[96]

Wu X, Yin H, Shi Z, Chen Y, Qi K, et al. 2018. Chemical composition and crystal morphology of epicuticular wax in mature fruits of 35 pear (Pyrus spp.) cultivars. Frontiers in Plant Science 9:679

doi: 10.3389/fpls.2018.00679
[97]

Qian J, Zhao Y, Shi Y, Chen K. 2022. Transcriptome analysis of peach fruit under 1-MCP treatment provides insights into regulation network in melting peach softening. Food Quality and Safety 6:fyac048

doi: 10.1093/fqsafe/fyac048
[98]

Yang Q, Yang X, Wang L, Zheng B, Cai Y, et al. 2022. Two R2R3-MYB genes cooperatively control trichome development and cuticular wax biosynthesis in Prunus persica. New Phytologist 234(1):179−96

doi: 10.1111/nph.17965
[99]

Qin K, Ge S, Xiao G, Chen F, Ding S, et al. 2024. 1-MCP treatment improves the postharvest quality of Jinxiu yellow peach by regulating cuticular wax composition and gene expression during cold storage. Journal of Food Science 89(5):2787−802

doi: 10.1111/1750-3841.17049
[100]

Ge S, Wang R, Yang L, Kong H, Chang X, et al. 2023. Transcriptomics and gas chromatography-mass spectrometry metabolomics reveal the mechanism of heat shock combined with 1-methylcyclopropene to regulate the cuticle wax of jujube fruit during storage. Food Chemistry 408:135187

doi: 10.1016/j.foodchem.2022.135187
[101]

Lim GH, Liu H, Yu K, Liu R, Shine MB, et al. 2020. The plant cuticle regulates apoplastic transport of salicylic acid during systemic acquired resistance. Science Advances 6(19):eaaz0478

doi: 10.1126/sciadv.aaz0478
[102]

Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486(7402):228−32

doi: 10.1038/nature11162
[103]

Zhang M, Wang J, Luo Q, Yang C, Yang H, et al. 2021. CsMYB96 enhances citrus fruit resistance against fungal pathogen by activating salicylic acid biosynthesis and facilitating defense metabolite accumulation. Journal of Plant Physiology 264:153472

doi: 10.1016/j.jplph.2021.153472
[104]

Ülker B, Shahid Mukhtar M, Somssich IE. 2007. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226(1):125−37

doi: 10.1007/s00425-006-0474-y
[105]

Zhou L, Ni E, Yang J, Zhou H, Liang H, et al. 2013. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. PLoS One 8(5):e65139

doi: 10.1371/journal.pone.0065139
[106]

Yuan Z, Jiang Y, Liu Y, Xu Y, Li S, et al. 2020. Exogenous hormones influence Brassica napus leaf cuticular wax deposition and cuticle function. PeerJ 8:e9264

doi: 10.7717/peerj.9264
[107]

Ali A, Kant K, Kaur N, Gupta S, Jindal P, et al. 2024. Salicylic acid: homeostasis, signalling and phytohormone crosstalk in plants under environmental challenges. South African Journal of Botany 169:314−35

doi: 10.1016/j.sajb.2024.04.012
[108]

Xia Y, Yu K, Navarre D, Seebold K, Kachroo A, et al. 2010. The glabra1 mutation affects cuticle formation and plant responses to microbes. Plant Physiology 154(2):833−46

doi: 10.1104/pp.110.161646
[109]

Sohn SI, Pandian S, Rakkammal K, Largia MJV, Thamilarasan SK, et al. 2022. Jasmonates in plant growth and development and elicitation of secondary metabolites: an updated overview. Frontiers in Plant Science 13:942789

doi: 10.3389/fpls.2022.942789
[110]

Li C, Xu M, Cai X, Han Z, Si J, et al. 2022. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. International Journal of Molecular Sciences 23(7):3945

doi: 10.3390/ijms23073945
[111]

Liu J, Li L, Xiong Z, Robert CAM, Li B, et al. 2024. Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize. Journal of Integrative Plant Biology 66(1):143−59

doi: 10.1111/jipb.13586
[112]

Wan H, Qiu H, Li Z, Zhang X, Zhang J, et al. 2022. Transcription factor CsESE3 positively modulates both jasmonic acid and wax biosynthesis in citrus. aBIOTECH 3(4):250−66

doi: 10.1007/s42994-022-00085-2
[113]

Colebrook EH, Thomas SG, Phillips AL, Hedden P. 2014. The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology 217(1):67−75

doi: 10.1242/jeb.089938
[114]

Knoche M, Peschel S. 2007. Gibberellins increase cuticle deposition in developing tomato fruit. Plant Growth Regulation 51(1):1−10

doi: 10.1007/s10725-006-9107-5
[115]

Liu C, Xiao P, Jiang F, Wang S, Liu Z, et al. 2022. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple. Plant Physiology and Biochemistry 174:11−21

doi: 10.1016/j.plaphy.2022.01.029
[116]

Mecchia MA, García-Hourquet M, Lozano-Elena F, Planas-Riverola A, Blasco-Escamez D, et al. 2021. The BES1/BZR1-family transcription factor MpBES1 regulates cell division and differentiation in Marchantia polymorpha. Current Biology 31(21):4860−4869.e8

doi: 10.1016/j.cub.2021.08.050
[117]

Hafeez MB, Zahra N, Zahra K, Raza A, Batool A, et al. 2021. Brassinosteroids: molecular and physiological responses in plant growth and abiotic stresses. Plant Stress 2:100029

doi: 10.1016/j.stress.2021.100029
[118]

Wang Z, Tian X, Zhao Q, Liu Z, Li X, et al. 2018. The E3 ligase DROUGHT HYPERSENSITIVE negatively regulates cuticular wax biosynthesis by promoting the degradation of transcription factor ROC4 in rice. The Plant Cell 30(1):228−44

doi: 10.1105/tpc.17.00823
[119]

Li J, Guo J, Liu J, Qu L, Li G, et al. 2025. Exogenous brassinosteroids improve the structure and quality properties of waxy maize starch under post-silking heat and drought stress. Food Chemistry 490:145093

doi: 10.1016/j.foodchem.2025.145093
[120]

Lee SB, Kim HU, Suh MC. 2016. MYB94 and MYB96 additively activate cuticular wax biosynthesis in Arabidopsis. Plant and Cell Physiology 57(11):2300−11

doi: 10.1093/pcp/pcw147
[121]

Seo PJ, Park CM. 2010. MYB96-mediated abscisic acid signals induce pathogen resistance response by promoting salicylic acid biosynthesis in Arabidopsis. New Phytologist 186(2):471−83

doi: 10.1111/j.1469-8137.2010.03183.x