[1]

Li B, Yang G, Wan R. 2020. Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): implications on eutrophication management. Environmental Pollution 260:114033

doi: 10.1016/j.envpol.2020.114033
[2]

Singh RP, Mangottiri V, Pandiyan B. 2020. Understanding the variability in estimation of water quality of lakes and reservoirs. IOP Conference Series: Materials Science and Engineering 955:012085

doi: 10.1088/1757-899X/955/1/012085
[3]

Yang S, Liang M, Qin Z, Qian Y, Li M, et al. 2021. A novel assessment considering spatial and temporal variations of water quality to identify pollution sources in urban rivers. Scientific Reports 11:8714

doi: 10.1038/s41598-021-87671-4
[4]

Suresh K, Tang T, van Vliet MTH, Bierkens MFP, Strokal M, et al. 2023. Recent advancement in water quality indicators for eutrophication in global freshwater lakes. Environmental Research Letters 18:063004

doi: 10.1088/1748-9326/acd071
[5]

Akinnawo SO. 2023. Eutrophication: causes, consequences, physical, chemical and biological techniques for mitigation strategies. Environmental Challenges 12:100733

doi: 10.1016/j.envc.2023.100733
[6]

Bai J, Zhao J, Zhang Z, Tian Z. 2022. Assessment and a review of research on surface water quality modeling. Ecological Modelling 466:109888

doi: 10.1016/j.ecolmodel.2022.109888
[7]

Biçe K, Myers Stewart T, Waldbusser GG, Meile C. 2025. The effect of carbonate mineral additions on biogeochemical conditions in surface sediments and benthic–pelagic exchange fluxes. Biogeosciences 22:641−657

doi: 10.5194/bg-22-641-2025
[8]

Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75:14−49

doi: 10.1128/mmbr.00028-10
[9]

Wang R, Han R, Long Q, Gao X, Xing J, et al. 2020. Bacterial and archaeal communities within an ultraoligotrophic, high-altitude lake in the pre-Himalayas of the Qinghai-Tibet Plateau. Indian Journal of Microbiology 60:363−373

doi: 10.1007/s12088-020-00881-8
[10]

Liu Y, Chen S, Liang J, Song J, Sun Y, et al. 2024. Bacterial community structure and environmental driving factors in the surface sediments of six mangrove sites from Guangxi, China. Microorganisms 12(12):2607

doi: 10.3390/microorganisms12122607
[11]

Ren B, Ma X, Li D, Bai L, Li J, et al. 2024. Nitrogen-cycling microbial communities respond differently to nitrogen addition under two contrasting grassland soil types. Frontiers in Microbiology 15:1290248

doi: 10.3389/fmicb.2024.1290248
[12]

Vijayan J, Nathan VK, Ammini P, Ammanamveetil AMH. 2023. Bacterial diversity in the aquatic system in India based on metagenome analysis—a critical review. Environmental Science and Pollution Research 30:28383−28406

doi: 10.1007/s11356-023-25195-2
[13]

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, et al. 2013. Chitinases: an update. Journal of Pharmacy & BioAllied Sciences 5:21−29

doi: 10.4103/0975-7406.106559
[14]

Zhang Z, Sun B, Johnson BE. 2015. Integration of a benthic sediment diagenesis module into the two dimensional hydrodynamic and water quality model – CE-QUAL-W2. Ecological Modelling 297:213−231

doi: 10.1016/j.ecolmodel.2014.10.025
[15]

Gao P, Wang P, Ding M, Zhang H, Huang G, et al. 2023. A meta-analysis reveals that geographical factors drive the bacterial community variation in Chinese lakes. Environmental Research 224:115561

doi: 10.1016/j.envres.2023.115561
[16]

Ji B, Liang J, Chen R. 2020. Bacterial eutrophic index for potential water quality evaluation of a freshwater ecosystem. Environmental Science and Pollution Research 27:32449−32455

doi: 10.1007/s11356-020-09585-4
[17]

Zhi Y, Wang W, Li W, Cao Y, Xia M. 2024. Increased nutrient levels induce different allocation strategies between canopy-forming and rosette-like submerged macrophytes. Water 16:3196

doi: 10.3390/w16223196
[18]

Yang L, Xu H, Pan S, Chen W, Zeng J. 2024. Identifying the impact of global human activities expansion on natural habitats. Journal of Cleaner Production 434:140247

doi: 10.1016/j.jclepro.2023.140247
[19]

Vasistha P, Ganguly R. 2020. Water quality assessment of natural lakes and its importance: an overview. Materials Today: Proceedings 32:544−552

doi: 10.1016/j.matpr.2020.02.092
[20]

Cheng L, Xue B, Zawisza E, Liu J, Yao S, et al. 2021. Specific species response of Cladocera to the trophic and hydrological environments of lakes: a case study of a typical shallow mesotrophic lake. CATENA 207:105630

doi: 10.1016/j.catena.2021.105630
[21]

He P, Wang H, Shi J, Xin M, Wang W, et al. 2023. Prokaryote distribution patterns along a dissolved oxygen gradient section in the tropical Pacific Ocean. Microorganisms 11:2172

doi: 10.3390/microorganisms11092172
[22]

Cai J, Bai C, Tang X, Dai J, Gong Y, et al. 2018. Characterization of bacterial and microbial eukaryotic communities associated with an ephemeral hypoxia event in Taihu Lake, a shallow eutrophic Chinese lake. Environmental Science and Pollution Research 25:31543−31557

doi: 10.1007/s11356-018-2987-x
[23]

Zhang Y, Zhang Y, Wei L, Li M, Zhu W, et al. 2022. Spatiotemporal correlations between water quality and microbial community of typical inflow river into Taihu Lake, China. Environmental Science and Pollution Research 29:63722−63734

doi: 10.1007/s11356-022-19023-2
[24]

Ye L, Xiao Y, Qin J, Tang J, Yin Y, et al. 2024. The influence of redox potential on phosphorus release from sediments in different water bodies. Marine Pollution Bulletin 207:116909

doi: 10.1016/j.marpolbul.2024.116909
[25]

Lavergne C, Aguilar-Muñoz P, Calle N, Thalasso F, Astorga-España MS, et al. 2021. Temperature differently affected methanogenic pathways and microbial communities in sub-Antarctic freshwater ecosystems. Environment International 154:106575

doi: 10.1016/j.envint.2021.106575
[26]

Wu H, Li Y, Zhang J, Niu L, Zhang W, et al. 2017. Sediment bacterial communities in a eutrophic lake influenced by multiple inflow-rivers. Environmental Science and Pollution Research 24:19795−19806

doi: 10.1007/s11356-017-9602-4
[27]

Yuan B, Wu W, Guo M, Zhou X, Xie S. 2021. Spatial-temporal dynamics and influencing factors of archaeal communities in the sediments of Lancang River cascade reservoirs (LRCR), China. PLoS One 16:e0253233

doi: 10.1371/journal.pone.0253233
[28]

Paerl HW, Otten TG. 2013. Harmful cyanobacterial blooms: causes, consequences, and controls. Microbial Ecology 65:995−1010

doi: 10.1007/s00248-00012-00159-y
[29]

Xu Q, Wang P, Huangleng J, Su H, Chen P, et al. 2022. Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf. Science of The Total Environment 805:150303

doi: 10.1016/j.scitotenv.2021.150303
[30]

Xie Z, Li W, Yang K, Wang X, Xiong S, et al. 2024. Bacterial and archaeal communities in Erhai Lake sediments: abundance and metabolic insight into a plateau lake at the edge of eutrophication. Microorganisms 12:1617

doi: 10.3390/microorganisms12081617
[31]

Cram JA, Chow CET, Sachdeva R, Needham DM, Parada AE, et al. 2014. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. The ISME Journal 9:563−580

doi: 10.1038/ismej.2014.153
[32]

Eigemann F, Tait K, Temperton B, Hellweger FL. 2024. Internal carbon recycling by heterotrophic prokaryotes compensates for mismatches between phytoplankton production and heterotrophic consumption. The ISME Journal 18:wrae103

doi: 10.1093/ismejo/wrae103
[33]

Morales SE, Tobias-Hünefeldt SP, Armstrong E, Pearman WS, Bogdanov K. 2025. Marine phytoplankton impose strong selective pressures on in vitro microbiome assembly, but drift is the dominant process. ISME Communications 5:ycaf001

doi: 10.1093/ismeco/ycaf001
[34]

Sun X, Li Z, Ding X, Ji G, Wang L, et al. 2022. Effects of algal blooms on phytoplankton composition and hypoxia in coastal waters of the northern Yellow Sea, China. Frontiers in Marine Science 9:897418

doi: 10.3389/fmars.2022.897418
[35]

Pacheco AR, Osborne ML, Segrè D. 2021. Non-additive microbial community responses to environmental complexity. Nature Communications 12:2365

doi: 10.1038/s41467-021-22426-3
[36]

Egidi E, Coleine C, Delgado-Baquerizo M, Singh BK. 2023. Assessing critical thresholds in terrestrial microbiomes. Nature Microbiology 8:2230−2233

doi: 10.1038/s41564-023-01536-2
[37]

Greenblum S. 2024. Microbial adaptability in changing environments. Nature Reviews Microbiology 22:327−327

doi: 10.1038/s41579-024-01046-w
[38]

Peltoniemi K, Laiho R, Juottonen H, Kiikkilä O, Mäkiranta P, et al. 2015. Microbial ecology in a future climate: effects of temperature and moisture on microbial communities of two boreal fens. FEMS Microbiology Ecology 91:fiv062

doi: 10.1093/femsec/fiv062
[39]

Hernández KL, Yannicelli B, Olsen LM, Dorador C, Menschel EJ, et al. 2016. Microbial activity response to solar radiation across contrasting environmental conditions in Salar de Huasco, northern Chilean altiplano. Frontiers in Microbiology 7:1857

doi: 10.3389/fmicb.2016.01857
[40]

Duan Q, Clegg T, Smith TP, Bell T, Pawar S. 2024. The role of metabolic strategies in determining microbial community diversity along temperature gradients. bioRxiv:2024.2008.2028.610078

doi: 10.1101/2024.08.28.610078
[41]

Calizza E, Salvatori R, Rossi D, Pasquali V, Careddu G, et al. 2022. Climate-related drivers of nutrient inputs and food web structure in shallow Arctic lake ecosystems. Scientific Reports 12:2125

doi: 10.1038/s41598-022-06136-4
[42]

Liu X, Nie Y, Wu XL. 2023. Predicting microbial community compositions in wastewater treatment plants using artificial neural networks. Microbiome 11:93

doi: 10.1186/s40168-023-01519-9
[43]

Dresti C, Rogora M, Fenocchi A. 2022. Hypolimnetic oxygen depletion in a deep oligomictic lake under climate change. Aquatic Sciences 85:4

doi: 10.1007/s00027-022-00902-2
[44]

Xie G, Zhang Y, Gong Y, Luo W, Tang X. 2024. Extreme trophic tales: deciphering bacterial diversity and potential functions in oligotrophic and hypereutrophic lakes. BMC Microbiology 24:348

doi: 10.1186/s12866-024-03488-x
[45]

Geng M, Zhang W, Hu T, Wang R, Cheng X, et al. 2022. Eutrophication causes microbial community homogenization via modulating generalist species. Water Research 210:118003

doi: 10.1016/j.watres.2021.118003
[46]

Wang Y, Wang H, Wang X, Xiao Y, Zhou Y, et al. 2020. Resuscitation, isolation and immobilization of bacterial species for efficient textile wastewater treatment: a critical review and update. Science of The Total Environment 730:139034

doi: 10.1016/j.scitotenv.2020.139034
[47]

Yang J, Jiang H, Wu G, Liu W, Zhang G. 2016. Distinct factors shape aquatic and sedimentary microbial community structures in the lakes of western China. Frontiers in Microbiology 7:1782

doi: 10.3389/fmicb.2016.01782
[48]

Freches A, Fradinho JC. 2024. The biotechnological potential of the Chloroflexota phylum. Applied and Environmental Microbiology 90:e01756-23

doi: 10.1128/aem.01756-23
[49]

Rain-Franco A, Le Moigne A, Serra Moncadas L, Silva MOD, et al. 2024. Dispersal shapes compositional and functional diversity in aquatic microbial communities. mSystems 9:e01403-24

doi: 10.1128/msystems.01403-24
[50]

Sun Y, Ye F, Huang Q, Du F, Song T, et al. 2023. Linking ecological niches to bacterial community structure and assembly in polluted urban aquatic ecosystems. Frontiers in Microbiology 14:1288304

doi: 10.3389/fmicb.2023.1288304
[51]

Huang Z, Hou D, Zhou R, Zeng S, Xing C, et al. 2021. Environmental water and sediment microbial communities shape intestine microbiota for host health: the central dogma in an anthropogenic aquaculture ecosystem. Frontiers in Microbiology 12:772149

doi: 10.3389/fmicb.2021.772149
[52]

Wang Y, Li W, Bao G, Bai M, Ye H. 2024. Differences in archaeal diversity and potential ecological functions between saline and hypersaline lakes on Qinghai-Tibet Plateau were driven by multiple environmental and non-environmental factors beyond the salinity. BMC Microbiology 24:153

doi: 10.1186/s12866-024-03307-3
[53]

He L, Sun X, Li S, Zhou W, Chen Z, et al. 2023. The vertical distribution and control factor of microbial biomass and bacterial community at macroecological scales. Science of The Total Environment 869:161754

doi: 10.1016/j.scitotenv.2023.161754
[54]

Wu X, Yang J, Ruan H, Wang S, Yang Y, et al. 2021. The diversity and co-occurrence network of soil bacterial and fungal communities and their implications for a new indicator of grassland degradation. Ecological Indicators 129:107989

doi: 10.1016/j.ecolind.2021.107989