[1]

Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, et al. 2024. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. Science China Life Sciences 67:1338−67

doi: 10.1007/s11427-024-2581-2
[2]

Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, et al. 2019. Molecular mechanisms of plant regeneration. Annual Review of Plant Biology 70:377−406

doi: 10.1146/annurev-arplant-050718-100434
[3]

Lin Q, Zong Y, Xue C, Wang S, Jin S, et al. 2020. Prime genome editing in rice and wheat. Nature Biotechnology 38:582−85

doi: 10.1038/s41587-020-0455-x
[4]

Wu LY, Shang GD, Wang FX, Gao J, Wan MC, et al. 2022. Dynamic chromatin state profiling reveals regulatory roles of auxin and cytokinin in shoot regeneration. Developmental Cell 57:526−542.e7

doi: 10.1016/j.devcel.2021.12.019
[5]

Mok DW, Mok MC. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52:89−118

doi: 10.1146/annurev.arplant.52.1.89
[6]

Kakimoto T. 2001. Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate: ATP/ADP isopentenyltransferases. Plant & Cell Physiology 42:677−85

doi: 10.1093/pcp/pce112
[7]

Zhang J, Zhang Z, Zhang R, Yang C, Zhang X, et al. 2024. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnology Journal 22:200−15

doi: 10.1111/pbi.14180
[8]

Zhang J, Liu W, Yang X, Gao A, Li X, et al. 2011. Isolation and characterization of two putative cytokinin oxidase genes related to grain number per spike phenotype in wheat. Molecular Biology Reports 38:2337−47

doi: 10.1007/s11033-010-0367-9
[9]

Zhang W, Peng K, Cui F, Wang D, Zhao J, et al. 2021. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnology Journal 19:335−50

doi: 10.1111/pbi.13467
[10]

Nisler J, Kopečný D, Pěkná Z, Končitíková R, Koprna R, et al. 2021. Diphenylurea-derived cytokinin oxidase/dehydrogenase inhibitors for biotechnology and agriculture. Journal of Experimental Botany 72:355−70

doi: 10.1093/jxb/eraa437
[11]

Motte H, Galuszka P, Spíchal L, Tarkowski P, Plíhal O, et al. 2013. Phenyl-adenine, identified in a LIGHT-DEPENDENT SHORT HYPOCOTYLS4-assisted chemical screen, is a potent compound for shoot regeneration through the inhibition of CYTOKININ OXIDASE/DEHYDROGENASE activity. Plant Physiology 161(3):1229−41

doi: 10.1104/pp.112.210716
[12]

Xiao J, Liu B, Yao Y, Guo Z, Jia H, et al. 2022. Wheat genomic study for genetic improvement of traits in China. Science China Life Sciences 65:1718−75

doi: 10.1007/s11427-022-2178-7
[13]

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF−GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38:1274−79

doi: 10.1038/s41587-020-0703-0
[14]

Wang K, Shi L, Liang X, Zhao P, Wang W, et al. 2022. The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nature Plants 8:110−17

doi: 10.1038/s41477-021-01085-8
[15]

Liu X, Bie XM, Lin X, Li M, Wang H, et al. 2023. Uncovering the transcriptional regulatory network involved in boosting wheat regeneration and transformation. Nature Plants 9:908−25

doi: 10.1038/s41477-023-01406-z
[16]

Yu Y, Yu H, Peng J, Yao WJ, Wang YP, et al. 2024. Enhancing wheat regeneration and genetic transformation through overexpression of TaLAX1. Plant Communications 5:100738

doi: 10.1016/j.xplc.2023.100738
[17]

Zou X, Sun H. 2023. DOF transcription factors: specific regulators of plant biological processes. Frontiers in Plant Science 14:1044918

doi: 10.3389/fpls.2023.1044918
[18]

Yanagisawa S. 2002. The Dof family of plant transcription factors. Trends in Plant Science 7:555−60

doi: 10.1016/S1360-1385(02)02362-2
[19]

Yanagisawa S. 1995. A novel DNA-binding domain that may form a single zinc finger motif. Nucleic Acids Research 23:3403−10

doi: 10.1093/nar/23.17.3403
[20]

Yanagisawa S. 2004. Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant and Cell Physiology 45:386−91

doi: 10.1093/pcp/pch055
[21]

Ramirez-Parra E, Perianez-Rodriguez J, Navarro-Neila S, Gude I, Moreno-Risueno MA, et al. 2017. The transcription factor OBP4 controls root growth and promotes callus formation. New Phytologist 213:1787−801

doi: 10.1111/nph.14315
[22]

Zhang A, Matsuoka K, Kareem A, Robert M, Roszak P, et al. 2022. Cell-wall damage activates DOF transcription factors to promote wound healing and tissue regeneration in Arabidopsis thaliana. Current Biology 32:1883−1894.e7

doi: 10.1016/j.cub.2022.02.069
[23]

Ishida Y, Tsunashima M, Hiei Y, Komari T. 2015. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods in Molecular Biology 1223:189−98

doi: 10.1007/978-1-4939-1695-5_15
[24]

Li YJ, Yu Y, Liu X, Zhang XS, Su YH. 2021. The Arabidopsis MATERNAL EFFECT EMBRYO ARREST45 protein modulates maternal auxin biosynthesis and controls seed size by inducing AINTEGUMENTA. The Plant Cell 33:1907−26

doi: 10.1093/plcell/koab084
[25]

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[26]

International Wheat Genome Sequencing Consortium (IWGSC). 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

doi: 10.1126/science.aar7191
[27]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[28]

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, et al. 2021. Twelve years of SAMtools and BCFtools. GigaScience 10:giab008

doi: 10.1093/gigascience/giab008
[29]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[30]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[31]

Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847−49

doi: 10.1093/bioinformatics/btw313
[32]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a 'one for all, all for one' bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[33]

Su YH, Zhou C, Li YJ, Yu Y, Tang LP, et al. 2020. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proceedings of the National Academy of Sciences of the United States of America 117:22561−71

doi: 10.1073/pnas.2015248117
[34]

Li H, Ye K, Shi Y, Cheng J, Zhang X, et al. 2017. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Molecular Plant 10:545−59

doi: 10.1016/j.molp.2017.01.004
[35]

Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, et al. 2005. Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

doi: 10.1186/1746-4811-1-13
[36]

Liu Z, Wei F, Feng YQ. 2010. Determination of cytokinins in plant samples by polymer monolith microextraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry. Analytical Methods 2:1676−85

doi: 10.1039/c0ay00334d
[37]

Omary M, Matosevich R, Efroni I. 2023. Systemic control of plant regeneration and wound repair. New Phytologist 237:408−13

doi: 10.1111/nph.18487
[38]

Shi H, Li P, Yun P, Zhu Y, Zhou H, et al. 2025. A DOF transcription factor GLW9/OsDOF25 regulates grain shape and tiller angle in rice. Plant Biotechnology Journal 23:2367−82

doi: 10.1111/pbi.70064
[39]

Fan Y, Chen H, Wang B, Li D, Zhou R, et al. 2024. Dwarf and less tillers on chromosome 3 promotes tillering in rice by sustaining floral organ number 1 expression. Plant Physiology 196:1064−79

doi: 10.1093/plphys/kiae367
[40]

Yin H, Liu W, Hu X, Jia J, Liu M, et al. 2025. A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay. Molecular Plant 18:366−82

doi: 10.1016/j.molp.2025.01.011
[41]

Sang YL, Cheng ZJ, Zhang XS. 2018. Plant stem cells and de novo organogenesis. New Phytologist 218:1334−39

doi: 10.1111/nph.15106
[42]

Guilfoyle TJ, Hagen G. 2007. Auxin response factors. Current Opinion in Plant Biology 10:453−60

doi: 10.1016/j.pbi.2007.08.014
[43]

Šmeringai J, Schrumpfová PP, Pernisová M. 2023. Cytokinins—regulators of de novo shoot organogenesis. Frontiers in Plant Science 14:1239133

doi: 10.3389/fpls.2023.1239133
[44]

Chen L, Zhao J, Song J, Jameson PE. 2020. Cytokinin dehydrogenase: a genetic target for yield improvement in wheat. Plant Biotechnology Journal 18:614−30

doi: 10.1111/pbi.13305