[1]

van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[2]

Zhou H, Shi H, Yang Y, Feng X, Chen X, et al. 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics 51:16−34

doi: 10.1016/j.jgg.2023.08.007
[3]

Wyszkowska J, Boros-Lajszner E, Kucharski J. 2022. Calorific value of Festuca rubra biomass in the phytostabilization of soil contaminated with nickel, cobalt and cadmium which disrupt the microbiological and biochemical properties of soil. Energies 15:3445

doi: 10.3390/en15093445
[4]

Ganapati RK, Naveed SA, Zafar S, Wang W, Xu J. 2022. Saline-alkali tolerance in rice: physiological response, molecular mechanism, and QTL identification and application to breeding. Rice Science 29:412−34

doi: 10.1016/j.rsci.2022.05.002
[5]

Huang L, He B, Han L, Liu J, Wang H, et al. 2017. A global examination of the response of ecosystem water-use efficiency to drought based on MODIS data. Science of The Total Environment 601-602:1097−107

doi: 10.1016/j.scitotenv.2017.05.084
[6]

Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909−30

doi: 10.1016/j.plaphy.2010.08.016
[7]

Tabatabaei S, Ehsanzadeh P. 2016. Photosynthetic pigments, ionic and antioxidative behaviour of hulled tetraploid wheat in response to NaCl. Photosynthetica 54:340−50

doi: 10.1007/s11099-016-0083-3
[8]

Singh P, Choudhary KK, Chaudhary N, Gupta S, Sahu M, et al. 2022. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Frontiers in Plant Science 13:1006617

doi: 10.3389/fpls.2022.1006617
[9]

Fedotova MV. 2019. Compatible osmolytes - bioprotectants: Is there a common link between their hydration and their protective action under abiotic stresses? Journal of Molecular Liquids 292:111339

doi: 10.1016/j.molliq.2019.111339
[10]

Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24

doi: 10.1016/j.cell.2016.08.029
[11]

Chen K, Li J, Tang J, Zhao FG, Liu X. 2006. Involvement of nitric oxide in regulation of salt stress-induced ABA accumulation in maize seedling. Journal of Plant Physiology and Molecular Biology 32:577−82 (in Chinese)

doi: 10.3321/j.issn:1671-3877.2006.05.011
[12]

Cao WH, Liu J, Zhou QY, Cao YR, Zheng SF, et al. 2006. Expression of tobacco ethylene receptor NTHK1 alters plant responses to salt stress. Plant, Cell & Environment 29:1210−19

doi: 10.1111/j.1365-3040.2006.01501.x
[13]

Sharma P, Jha AB, Dubey RS, Pessarakli M. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037

doi: 10.1155/2012/217037
[14]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33:453−67

doi: 10.1111/j.1365-3040.2009.02041.x
[15]

Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60:796−804

doi: 10.1111/jipb.12689
[16]

Li J, Shen L, Han X, He G, Fan W, et al. 2023. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO Journal 42:e112401

doi: 10.15252/embj.2022112401
[17]

Verslues PE, Batelli G, Grillo S, Agius F, Kim YS, et al. 2007. Interaction of SOS2 with nucleoside diphosphate kinase 2 and catalases reveals a point of connection between salt stress and H2O2 signaling in Arabidopsis thaliana. Molecular and Cellular Biology 27:7771−80

doi: 10.1128/MCB.00429-07
[18]

Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, et al. 2012. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell 24:1127−42

doi: 10.1105/tpc.111.095273
[19]

Sun J, Li S, Guo H, Hou Z. 2021. Ion homeostasis and Na+ transport-related gene expression in two cotton (Gossypium hirsutum L.) varieties under saline, alkaline and saline-alkaline stresses. PLoS One 16:e0256000

doi: 10.1371/journal.pone.0256000
[20]

Han F, Sun M, He W, Guo S, Feng J, et al. 2022. Transcriptome analysis reveals molecular mechanisms under salt stress in leaves of foxtail millet (Setaria italica L.). Plants 11:1864

doi: 10.3390/plants11141864
[21]

Zhang X, Long Y, Huang J, Xia J. 2020. OsNAC45 is involved in ABA response and salt tolerance in rice. Rice 13:79

doi: 10.1186/s12284-020-00440-1
[22]

Zhu Z, Dai Y, Yu G, Zhang X, Chen Q, et al. 2023. Dynamic physiological and transcriptomic changes reveal memory effects of salt stress in maize. BMC Genomics 24:726

doi: 10.1186/s12864-023-09845-w
[23]

Diédhiou CJ, Popova OV, Golldack D. 2009. Transcript profiling of the salt-tolerant Festuca rubra ssp. litoralis reveals a regulatory network controlling salt acclimatization. Journal of Plant Physiology 166:697−711

doi: 10.1016/j.jplph.2008.09.015
[24]

Guo J, Yang Y, Wang G, Yang L, Sun X. 2010. Ecophysiological responses of Abies fabri seedlings to drought stress and nitrogen supply. Physiologia Plantarum 139:335−47

doi: 10.1111/j.1399-3054.2010.01370.x
[25]

Rasheed F, Mir IR, Sehar Z, Fatma M, Gautam H, et al. 2022. Nitric oxide and salicylic acid regulate glutathione and ethylene production to enhance heat stress acclimation in wheat involving sulfur assimilation. Plants 11:3131

doi: 10.3390/plants11223131
[26]

Jameel J, Anwar T, Majeed S, Qureshi H, Siddiqi EH, et al. 2024. Effect of salinity on growth and biochemical responses of brinjal varieties: implications for salt tolerance and antioxidant mechanisms. BMC Plant Biology 24:128

doi: 10.1186/s12870-024-04836-9
[27]

Zeng CQ, Liu WX, Hao JY, Fan DN, Chen LM, et al. 2019. Measuring the expression and activity of the CAT enzyme to determine Al resistance in soybean. Plant Physiology and Biochemistry 144:254−63

doi: 10.1016/j.plaphy.2019.09.026
[28]

Haida Z, Hakiman M. 2019. A comprehensive review on the determination of enzymatic assay and nonenzymatic antioxidant activities. Food Science & Nutrition 7:1555−63

doi: 10.1002/fsn3.1012
[29]

Grintzalis K, Georgiou CD, Schneider YJ. 2015. An accurate and sensitive Coomassie Brilliant Blue G-250-based assay for protein determination. Analytical Biochemistry 480:28−30

doi: 10.1016/j.ab.2015.03.024
[30]

Laskoś K, Czyczyło-Mysza IM, Waligórski P, Dziurka K, Skrzypek E, et al. 2024. Characterising biological and physiological drought signals in diverse parents of a wheat mapping population. International Journal of Molecular Sciences 25:6573

doi: 10.3390/ijms25126573
[31]

Kou X, He Y, Li Y, Chen X, Feng Y, et al. 2019. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chemistry 270:385−94

doi: 10.1016/j.foodchem.2018.06.151
[32]

Shen T, Zhang C, Liu F, Wang W, Lu Y, et al. 2020. High-throughput screening of free proline content in rice leaf under cadmium stress using hyperspectral imaging with chemometrics. Sensors 20:3229

doi: 10.3390/s20113229
[33]

Lekklar C, Suriya-Arunroj D, Pongpanich M, Comai L, Kositsup B, et al. 2019. Comparative genomic analysis of rice with contrasting photosynthesis and grain production under salt stress. Genes 10:562

doi: 10.3390/genes10080562
[34]

Meloni DA, Oliva MA, Martinez CA, Cambraia J. 2003. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49:69−76

doi: 10.1016/S0098-8472(02)00058-8
[35]

Zhong M, Wang Y, Zhang Y, Shu S, Sun J, et al. 2019. Overexpression of transglutaminase from cucumber in tobacco increases salt tolerance through regulation of photosynthesis. International Journal of Molecular Sciences 20:894

doi: 10.3390/ijms20040894
[36]

Cirillo C, De Micco V, Arena C, Carillo P, Pannico A, et al. 2019. Biochemical, physiological and anatomical mechanisms of adaptation of Callistemon citrinus and Viburnum lucidum to NaCl and CaCl2 salinization. Frontiers in Plant Science 10:742

doi: 10.3389/fpls.2019.00742
[37]

Adnan MY, Hussain T, Asrar H, Hameed A, Gul B, et al. 2016. Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora - Morphology, Distribution, Functional Ecology of Plants 225:1−9

doi: 10.1016/j.flora.2016.09.006
[38]

Zuo H, Yin S, Wang T, Xiong X, Shi M, et al. 2022. Nitrogen application alleviates the adverse effects of defoliation stress on Lolium perenne L. by enhancing the antioxidant system and promoting photosynthesis. Agronomy 12:2902

doi: 10.3390/agronomy12112902
[39]

Goussi R, Manfredi M, Marengo E, Derbali W, Cantamessa S, et al. 2021. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress. Biochimica et Biophysica Acta Bioenergetics 1862:148482

doi: 10.1016/j.bbabio.2021.148482
[40]

Lu X, Ma L, Zhang C, Yan H, Bao J, et al. 2022. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC Plant Biology 22:528

doi: 10.1186/s12870-022-03907-z
[41]

Luo D, Shi YJ, Song FH, Li JC. 2019. Effects of salt stress on growth, photosynthetic and fluorescence characteristics, and root architecture of Corylus heterophylla × C. avellan seedlings. The Journal of Applied Ecology 30:3376−84 (in Chinese)

doi: 10.13287/j.1001-9332.201910.001
[42]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79

doi: 10.1038/s41580-022-00499-2
[43]

Del Río LA, López-Huertas E. 2016. ROS generation in peroxisomes and its role in cell signaling. Plant & Cell Physiology 57:1364−76

doi: 10.1093/pcp/pcw076
[44]

Porgali ZB, Yurekli F. 2005. Salt stress-induced alterations in proline accumulation, relative water content and superoxide dismutase (SOD) activity in salt sensitive Lycopersicon esculentum and salt-tolerant L. pennellii. Acta Botanica Hungarica 47:173−82

doi: 10.1556/ABot.47.2005.1-2.15
[45]

Guo J, Zhan L, Su X, Wang T. 2024. Physiological responses and quality alterations of pea sprouts under salt stress: implications for salt-tolerant mechanism. Horticulturae 10:966

doi: 10.3390/horticulturae10090966
[46]

Yasar F, Ellialtioglu S, Yildiz K. 2008. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology 55:782−86

doi: 10.1134/S1021443708060071
[47]

Chai S, Yang Z, Deng X, Wang L, Jiang Y, et al. 2024. ZnO quantum dots alleviate salt stress in Salvia miltiorrhiza by enhancing growth, scavenging reactive oxygen species, and modulating stress-responsive genes. Environmental Pollution 344:123363

doi: 10.1016/j.envpol.2024.123363
[48]

Li CH, Wang G, Zhao JL, Zhang LQ, Ai LF, et al. 2014. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. The Plant Cell 26:2538−53

doi: 10.1105/tpc.114.125187
[49]

Nicolas M, Bouma J, Venema JH, van der Schoot H, Verstappen F, et al. 2025. Potato cultivars use distinct mechanisms for salt stress acclimation. Plant Stress 15:100798

doi: 10.1016/j.stress.2025.100798
[50]

Li H, Duijts K, Pasini C, van Santen JE, Lamers J, et al. 2023. Effective root responses to salinity stress include maintained cell expansion and carbon allocation. New Phytologist 238:1942−56

doi: 10.1111/nph.18873
[51]

Zou Z, Khan A, Khan A, Tao Z, Zhang S, et al. 2024. Activation of ABA signaling pathway and up-regulation of salt-responsive genes confer salt stress tolerance of wheat (Triticum aestivum L.) seedlings. Agronomy 14:2095

doi: 10.3390/agronomy14092095
[52]

Fu H, Yang Y. 2023. How plants tolerate salt stress. Current Issues in Molecular Biology 45:5914−34

doi: 10.3390/cimb45070374
[53]

Ahmed S, Heo TY, Roy Choudhury A, Walitang DI, Choi J, et al. 2021. Accumulation of compatible solutes in rice (Oryza sativa L.) cultivars by inoculation of endophytic plant growth promoting bacteria to alleviate salt stress. Applied Biological Chemistry 64:68

doi: 10.1186/s13765-021-00638-x
[54]

Rahman MM, Rahman MA, Miah MG, Saha SR, Karim MA, et al. 2017. Mechanistic insight into salt tolerance of Acacia auriculiformis: the importance of ion selectivity, osmoprotection, tissue tolerance, and Na+ exclusion. Frontiers in Plant Science 8:155

doi: 10.3389/fpls.2017.00155
[55]

Jin CW, Sun YL, Cho DH. 2012. Changes in photosynthetic rate, water potential, and proline content in kenaf seedlings under salt stress. Canadian Journal of Plant Science 92:311−19

doi: 10.4141/cjps2011-144
[56]

Sui X, Xu Z, Zheng Y, Li Y, Zhang C, et al. 2024. Transcriptomic and comprehensive analysis of salt stress–alleviating mechanisms by Ensifer sesbaniae DY22 in soybean. Environmental and Experimental Botany 226:105908

doi: 10.1016/j.envexpbot.2024.105908
[57]

Xu Z, Chen X, Lu X, Zhao B, Yang Y, et al. 2021. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiology and Biochemistry 160:315−28

doi: 10.1016/j.plaphy.2021.01.027
[58]

Jiang Y, Deyholos MK. 2006. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biology 6:25

doi: 10.1186/1471-2229-6-25
[59]

Lee DK, Chung PJ, Jeong JS, Jang G, Bang SW, et al. 2017. The rice OsNAC6 transcription factor orchestrates multiple molecular mechanisms involving root structural adaptions and nicotianamine biosynthesis for drought tolerance. Plant Biotechnology Journal 15:754−64

doi: 10.1111/pbi.12673
[60]

An X, Liao Y, Zhang J, Dai L, Zhang N, et al. 2015. Overexpression of rice NAC gene SNAC1 in ramie improves drought and salt tolerance. Plant Growth Regulation 76:211−23

doi: 10.1007/s10725-014-9991-z
[61]

Dong J, Chen C, Chen Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology 51:21−37

doi: 10.1023/A:1020780022549
[62]

Chen H, Lai Z, Shi J, Xiao Y, Chen Z, et al. 2010. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress. BMC Plant Biology 10:281

doi: 10.1186/1471-2229-10-281
[63]

Sukumaran S, Lethin J, Liu X, Pelc J, Zeng P, et al. 2023. Genome-wide analysis of MYB transcription factors in the wheat genome and their roles in salt stress response. Cells 12:1431

doi: 10.3390/cells12101431
[64]

Liu X, Yang X, Zhang B. 2021. Transcriptome analysis and functional identification of GmMYB46 in soybean seedlings under salt stress. PeerJ 9:e12492

doi: 10.7717/peerj.12492
[65]

Zhang X, Liu P, Qing C, Yang C, Shen Y, et al. 2021. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ 9:e10765

doi: 10.7717/peerj.10765