[1]

Gilardoni S, Massoli P, Paglione M, Giulianelli L, Carbone C, et al. 2016. Direct observation of aqueous secondary organic aerosol from biomass-burning emissions. Proceedings of the National Academy of Sciences of the United States of America 113:10013−18

doi: 10.1073/pnas.1602212113
[2]

Lim CY, Hagan DH, Coggon MM, Koss AR, Sekimoto K, et al. 2019. Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions. Atmospheric Chemistry and Physics 19:12797−809

doi: 10.5194/acp-19-12797-2019
[3]

Williams A, Jones JM, Ma L, Pourkashanian M. 2012. Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science 38:113−37

doi: 10.1016/j.pecs.2011.10.001
[4]

Brown ME, Chang MCY. 2014. Exploring bacterial lignin degradation. Current Opinion in Chemical Biology 19:1−7

doi: 10.1016/j.cbpa.2013.11.015
[5]

Urbanski SP, Hao WM, Baker S. 2008. Chemical composition of wildland fire emissions. Developments in Environmental Science 8:79−107

doi: 10.1016/S1474-8177(08)00004-1
[6]

Carstens C, Bell DM, Doré FS, Top J, Dubois C, et al. 2025. Effects of relative humidity on time-resolved molecular characterization of secondary organic aerosols from the oh-initiated oxidation of cresol in the presence of NOx. Environmental Science & Technology 59:1700−11

doi: 10.1021/acs.est.4c08215
[7]

Schwantes RH, Schilling KA, McVay RC, Lignell H, Coggon MM, et al. 2017. Formation of highly oxygenated low-volatility products from cresol oxidation. Atmospheric Chemistry and Physics 17:3453−74

doi: 10.5194/acp-17-3453-2017
[8]

Wagnon SW, Thion S, Nilsson EJK, Mehl M, Serinyel Z, et al. 2018. Experimental and modeling studies of a biofuel surrogate compound: laminar burning velocities and jet-stirred reactor measurements of anisole. Combustion and Flame 189:325−36

doi: 10.1016/j.combustflame.2017.10.020
[9]

Büttgen RD, Tian M, Fenard Y, Minwegen H, Boot MD, et al. 2020. An experimental, theoretical and kinetic modelling study on the reactivity of a lignin model compound anisole under engine-relevant conditions. Fuel 269:117190

doi: 10.1016/j.fuel.2020.117190
[10]

Zabeti S, Aghsaee M, Fikri M, Welz O, Schulz C. 2017. Optical properties and pyrolysis of shock-heated gas-phase anisole. Proceedings of the Combustion Institute 36:4525−32

doi: 10.1016/j.proci.2016.06.156
[11]

Shu B, Herzler J, Peukert S, Fikri M, Schulz C. 2017. A shock tube and modeling study about anisole pyrolysis using time-resolved CO absorption measurements. International Journal of Chemical Kinetics 49:656−67

doi: 10.1002/kin.21105
[12]

Wu Y, Rossow B, Modica V, Yu X, Wu L, et al. 2017. Laminar flame speed of lignocellulosic biomass-derived oxygenates and blends of gasoline/oxygenates. Fuel 202:572−82

doi: 10.1016/j.fuel.2017.04.085
[13]

Zare S, Roy S, El Maadi A, Askari O. 2019. An investigation on laminar burning speed and flame structure of anisole-air mixture. Fuel 244:120−31

doi: 10.1016/j.fuel.2019.01.149
[14]

Delort N, Meziane I, Framinet M, Bounaceur R, Bourgalais J, et al. 2024. An experimental and modeling investigation of the combustion of anisole and guaiacol. Fuel 362:130832

doi: 10.1016/j.fuel.2023.130832
[15]

Arends IWCE, Louw R, Mulder P. 1993. Kinetic study of the thermolysis of anisole in a hydrogen atmosphere. The Journal of Physical Chemistry 97:7914−25

doi: 10.1021/j100132a020
[16]

Friderichsen AV, Shin EJ, Evans RJ, Nimlos MR, Dayton DC, et al. 2001. The pyrolysis of anisole (C6H5OCH3) using a hyperthermal nozzle. Fuel 80:1747−55

doi: 10.1016/S0016-2361(01)00059-X
[17]

Pecullan M, Brezinsky K, Glassman I. 1997. Pyrolysis and oxidation of anisole near 1000 K. The Journal of Physical Chemistry A 101:3305−16

doi: 10.1021/jp963203b
[18]

Pelucchi M, Faravelli T, Frassoldati A, Ranzi E, Gorugantu SB, et al. 2018. Experimental and kinetic modeling study of pyrolysis and combustion of anisole. Chemical Engineering Transactions 65:127−32

doi: 10.3303/CET1865022
[19]

Scheer AM, Mukarakate C, Robichaud DJ, Ellison GB, Nimlos MR. 2010. Radical chemistry in the thermal decomposition of anisole and deuterated anisoles: an investigation of aromatic growth. The Journal of Physical Chemistry A 114:9043−56

doi: 10.1021/jp102046p
[20]

Yuan W, Li T, Li Y, Zeng M, Zhang Y, et al. 2019. Experimental and kinetic modeling investigation on anisole pyrolysis: implications on phenoxy and cyclopentadienyl chemistry. Combustion and Flame 201:187−99

doi: 10.1016/j.combustflame.2018.12.028
[21]

Zhang T, Bhattarai C, Son Y, Samburova V, Khlystov A, et al. 2021. Reaction mechanisms of anisole pyrolysis at different temperatures: experimental and theoretical studies. Energy & Fuels 35:9994−10008

doi: 10.1021/acs.energyfuels.1c00858
[22]

Chen B, Kruse S, Schmid R, Cai L, Hansen N, et al. 2021. Oxygenated PAH formation chemistry investigation in anisole jet stirred reactor oxidation by a thermodynamic approach. Energy & Fuels 35:1535−45

doi: 10.1021/acs.energyfuels.0c03829
[23]

Nowakowska M, Herbinet O, Dufour A, Glaude PA. 2014. Detailed kinetic study of anisole pyrolysis and oxidation to understand tar formation during biomass combustion and gasification. Combustion and Flame 161:1474−88

doi: 10.1016/j.combustflame.2013.11.024
[24]

Bierkandt T, Hemberger P, Oßwald P, Krüger D, Köhler M, et al. 2019. Flame structure of laminar premixed anisole flames investigated by photoionization mass spectrometry and photoelectron spectroscopy. Proceedings of the Combustion Institute 37:1579−87

doi: 10.1016/j.proci.2018.07.037
[25]

Sood K, Gosselin S, Seifali Abbas-Abadi M, De Coensel N, Lizardo-Huerta JC, et al. 2024. Experimental detection of oxygenated aromatics in an anisole-blended flame. Energy & Fuels 38:6355−69

doi: 10.1021/acs.energyfuels.3c04800
[26]

Sood K, Gosselin S, El Bakali A, Faccinetto A, Desgroux P, et al. 2024. Quantitative investigation of the formation of oxygenated aromatics in an anisole-doped flame. Proceedings of the Combustion Institute 40:105289

doi: 10.1016/j.proci.2024.105289
[27]

Sood K, Faccinetto A, Gosselin S, Suzuki S, El Bakali A, et al. 2025. Study of the influence of anisole amounts and equivalence ratios on 1–3 ring aromatics in premixed flames near the sooting threshold. Fuel 392:134831

doi: 10.1016/j.fuel.2025.134831
[28]

Chen B, Hellmuth M, Faller S, May L, Liu P, et al. 2022. Exploring the combustion chemistry of anisole in laminar counterflow diffusion-flames under oxy-fuel conditions. Combustion and Flame 243:111929

doi: 10.1016/j.combustflame.2021.111929
[29]

Pelucchi M, Cavallotti C, Cuoci A, Faravelli T, Frassoldati A, et al. 2019. Detailed kinetics of substituted phenolic species in pyrolysis bio-oils. Reaction Chemistry & Engineering 4:490−506

doi: 10.1039/C8RE00198G
[30]

Roy S, Askari O. 2022. Detailed kinetics for anisole oxidation under various range of operating conditions. Fuel 325:124907

doi: 10.1016/j.fuel.2022.124907
[31]

Hemings EB, Bozzano G, Dente M, Ranzi E. 2011. Detailed kinetics of the pyrolysis and oxidation of anisole. Chemical Engineering Transactions 24:61−66

doi: 10.3303/CET1124011
[32]

Koirala Y. 2015. Investigating the kinetics of anisole: a simple lignin model compound. Thesis. Colorado School of Mine, USA

[33]

Hu M, Zhao S, Luo Y. 2023. ReaxFF MD and detailed reaction kinetic study on the thermal cracking and partial combustion of anisole: a biomass model tar compound. RSC Advance 13:36188−99

doi: 10.1039/D3RA06177A
[34]

Dong W, Hong R, Yao J, Wang D, Yan L, et al. 2024. Soot formation and laminar combustion characteristics of anisole: ReaxFF MD simulation and kinetic analysis. Carbon Neutrality 3:34

doi: 10.1007/s43979-024-00107-6
[35]

Johnson RD. Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database 101. National Institute of Standards and Technology, Gaithersburg, MD

[36]

Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, et al. 2013. Gaussian 09, Revision D. 01. Wallingford CT

[37]

Liu P, Zhang Y, Li Z, Bennett A, Lin H, et al. 2019. Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition. Combustion and Flame 202:276−91

doi: 10.1016/j.combustflame.2019.01.023
[38]

Barker JR. 2001. Multiple-Well, multiple-path unimolecular reaction systems. I. MultiWell computer program suite. International Journal of Chemical Kinetics 33:232−45

doi: 10.1002/kin.1017
[39]

Liu P, Lin H, Yang Y, Shao C, Gu C, et al. 2014. New insights into thermal decomposition of polycyclic aromatic hydrocarbon oxyradicals. Journal of Physical Chemistry A 118:11337−45

doi: 10.1021/jp510498j
[40]

Zádor J, Jasper AW, Miller JA. 2009. The reaction between propene and hydroxyl. Physical Chemistry Chemical Physics 11:11040−53

doi: 10.1039/b915707g
[41]

Liu P, Li Z, Roberts WL. 2019. The growth of PAHs and soot in the post-flame region. Proceedings of the Combustion Institute 37:977−84

doi: 10.1016/j.proci.2018.05.047
[42]

Liu P, Roberts WL. 2023. Kinetic analysis of the pathways to naphthalene formation from phenyl + 1,3-Butadiyne reaction. Proceedings of the Combustion Institute 39:63−71

doi: 10.1016/j.proci.2022.07.014
[43]

Liu P, Li Y, Sarathy SM, Roberts WL. 2020. Gas-to-liquid phase transition of PAH at flame temperatures. The Journal of Physical Chemistry A 124:3896−903

doi: 10.1021/acs.jpca.0c01912
[44]

Kee R, Rupley F, Miller J, Coltrin M, Grcar J, et al. 2008. Chemkin-Pro. In ANSYS reaction design. San Diego, CA

[45]

Paul S, Back MH. 1975. A kinetic determination of the dissociation energy of the C—O bond in anisole. Canadian Journal of Chemistry 53:3330−38

doi: 10.1139/v75-476
[46]

Lin CY, Lin MC. 1986. Thermal decomposition of methyl phenyl ether in shock waves: the kinetics of phenoxy radical reactions. The Journal of Physical Chemistry 90:425−31

doi: 10.1021/j100275a014