[1]

Zhang J, Xu Y, Liu H, Pan Z. 2019. MicroRNAs in ovarian follicular atresia and granulosa cell apoptosis. Reproductive Biology and Endocrinology 17:9

doi: 10.1186/s12958-018-0450-y
[2]

Hummitzsch K, Anderson RA, Wilhelm D, Wu J, Telfer EE, et al. 2015. Stem cells, progenitor cells, and lineage decisions in the ovary. Endocrine Reviews 36:65−91

doi: 10.1210/er.2014-1079
[3]

Ma L, Tang X, Guo S, Liang M, Zhang B, et al. 2020. miRNA-21-3p targeting of FGF2 suppresses autophagy of bovine ovarian granulosa cells through AKT/mTOR pathway. Theriogenology 157:226−37

doi: 10.1016/j.theriogenology.2020.06.021
[4]

Zhang Z, Chen CZ, Xu MQ, Zhang LQ, Liu JB, et al. 2019. MiR-31 and miR-143 affect steroid hormone synthesis and inhibit cell apoptosis in bovine granulosa cells through FSHR. Theriogenology 123:45−53

doi: 10.1016/j.theriogenology.2018.09.020
[5]

Hughes FM Jr, Gorospe WC. 1991. Biochemical identification of apoptosis (programmed cell death) in granulosa cells: evidence for a potential mechanism underlying follicular atresia. Endocrinology 129:2415−22

doi: 10.1210/endo-129-5-2415
[6]

Zhang X, Chen Y, Yang M, Shang J, Xu Y, et al. 2020. MiR-21-5p actions at the Smad7 gene during pig ovarian granulosa cell apoptosis. Animal Reproduction Science 223:106645

doi: 10.1016/j.anireprosci.2020.106645
[7]

Edson MA, Nagaraja AK, Matzuk MM. 2009. The mammalian ovary from genesis to revelation. Endocrine Reviews 30:624−712

doi: 10.1210/er.2009-0012
[8]

Xie M, Zhang C, Zeng W, Mi Y. 2004. Effects of follicle-stimulating hormone and 17β-estradiol on proliferation of chicken embryonic ovarian germ cells in culture. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology 139:521−26

doi: 10.1016/j.cbpb.2004.10.017
[9]

Larimore EL, Amundson OL, Bridges GA, McNeel AK, Cushman RA, et al. 2016. Changes in ovarian function associated with circulating concentrations of estradiol before a GnRH-induced ovulation in beef cows. Domestic Animal Endocrinology 57:71−9

doi: 10.1016/j.domaniend.2016.06.001
[10]

Xing L, Esau C, Trudeau VL. 2016. Direct regulation of aromatase B expression by 17β-estradiol and dopamine D1 receptor agonist in adult radial glial cells. Frontiers in Neuroscience 9:504

doi: 10.3389/fnins.2015.00504
[11]

Peluso JJ, Pappalardo A, Losel R, Wehling M. 2005. Expression and function of PAIRBP1 within gonadotropin-primed immature rat ovaries: PAIRBP1 regulation of granulosa and luteal cell viability. Biology of Reproduction 73:261−70

doi: 10.1095/biolreprod.105.041061
[12]

Rueda BR, Hendry IR, Hendry III WJ, Stormshak F, Slayden OD, et al. 2000. Decreased progesterone levels and progesterone receptor antagonists promote apoptotic cell death in bovine luteal cells. Biology of Reproduction 62:269−76

doi: 10.1095/biolreprod62.2.269
[13]

Svensson EC, Markström E, Andersson M, Billig H. 2000. Progesterone receptor-mediated inhibition of apoptosis in granulosa cells isolated from rats treated with human chorionic gonadotropin. Biology of Reproduction 63:1457−64

doi: 10.1095/biolreprod63.5.1457
[14]

Lonergan P, Sánchez JM. 2020. Symposium review: progesterone effects on early embryo development in cattle. Journal of Dairy Science 103:8698−707

doi: 10.3168/jds.2020-18583
[15]

Graham JD, Clarke CL. 1997. Physiological action of progesterone in target tissues. Endocrine Reviews 18:502−19

doi: 10.1210/edrv.18.4.0308
[16]

Knowles RG, Moncada S. 1994. Nitric oxide synthases in mammals. Biochemical Journal 298(Pt 2):249−58

doi: 10.1042/bj2980249
[17]

Ducsay CA, Myers DA. 2011. eNOS activation and NO function: differential control of steroidogenesis by nitric oxide and its adaptation with hypoxia. Journal of Endocrinology 210:259−69

doi: 10.1530/JOE-11-0034
[18]

Guzik TJ, Korbut R, Adamek-Guzik T. 2003. Nitric oxide and superoxide in inflammation and immune regulation. Journal of Physiology and Pharmacology 54:469−87

[19]

Zhang W, Wei QW, Wang ZC, Ding W, Wang W, et al. 2011. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and the related nitric oxide/cyclic GMP signaling pathway in the ovaries of neonatal and immature rats. Journal of Zhejiang University SCIENCE B 12:55−64

doi: 10.1631/jzus.B1000174
[20]

Ding W, Zhang W, Hui FM, Zhang YH, Zhang FF, et al. 2012. Cell-specific expression and immunolocalization of nitric oxide synthase isoforms and soluble guanylyl cyclase α1 and β1 subunits in the ovary of fetal, neonatal and immature pigs. Animal Reproduction Science 131:172−80

doi: 10.1016/j.anireprosci.2012.02.013
[21]

Basini G, Tamanini C. 2001. Interrelationship between nitric oxide and prostaglandins in bovine granulosa cells. Prostaglandins & Other Lipid Mediators 66:179−202

doi: 10.1016/S0090-6980(01)00156-3
[22]

Singh VK, Lal B. 2017. Nitric oxide (NO) stimulates steroidogenesis and folliculogenesis in fish. Reproduction 153:133−46

doi: 10.1530/REP-16-0482
[23]

Tobai H, Nishiya I. 2001. Nitric oxide mediates inhibitory effect of interleukin-1β on estrogen production in human granulosa-luteal cells. Journal of Obstetrics and Gynaecology Research 27:53−9

doi: 10.1111/j.1447-0756.2001.tb01216.x
[24]

Basini G, Grasselli F. 2015. Nitric oxide in follicle development and oocyte competence. Reproduction 150:R1−R9

doi: 10.1530/REP-14-0524
[25]

Dubey PK, Tripathi V, Singh RP, Saikumar G, Nath A, et al. 2012. Expression of nitric oxide synthase isoforms in different stages of buffalo (Bubalus bubalis) ovarian follicles: effect of nitric oxide on in vitro development of preantral follicle. Theriogenology 77:280−91

doi: 10.1016/j.theriogenology.2011.08.002
[26]

Chen Q, Yano T, Matsumi H, Osuga Y, Yano N, et al. 2005. Cross-Talk between Fas/Fas ligand system and nitric oxide in the pathway subserving granulosa cell apoptosis: a possible regulatory mechanism for ovarian follicle atresia. Endocrinology 146:808−15

doi: 10.1210/en.2004-0579
[27]

Zamberlam G, Portela V, de Oliveira JFC, Gonçalves PBD, Price CA. 2011. Regulation of inducible nitric oxide synthase expression in bovine ovarian granulosa cells. Molecular and Cellular Endocrinology 335:189−94

doi: 10.1016/j.mce.2011.01.013
[28]

Virág L, Szabó É, Gergely P, Szabó C. 2003. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicology Letters 140:113−24

doi: 10.1016/S0378-4274(02)00508-8
[29]

Radi R. 2013. Peroxynitrite, a stealthy biological oxidant. Journal of Biological Chemistry 288:26464−72

doi: 10.1074/jbc.R113.472936
[30]

Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. 2001. Unraveling peroxynitrite formation in biological systems. Free Radical Biology and Medicine 30:463−88

doi: 10.1016/S0891-5849(00)00373-7
[31]

Uribe P, Boguen R, Treulen F, Sánchez R, Villegas JV. 2015. Peroxynitrite-mediated nitrosative stress decreases motility and mitochondrial membrane potential in human spermatozoa. Molecular Human Reproduction 21:237−43

doi: 10.1093/molehr/gau107
[32]

Ottolini M, Hong K, Cope EL, Daneva Z, DeLalio LJ, et al. 2020. Local peroxynitrite impairs endothelial transient receptor potential vanilloid 4 channels and elevates blood pressure in obesity. Circulation 141:1318−33

doi: 10.1161/CIRCULATIONAHA.119.043385
[33]

Appasamy M, Jauniaux E, Serhal P, Al-Qahtani A, Groome NP, et al. 2008. Evaluation of the relationship between follicular fluid oxidative stress, ovarian hormones, and response to gonadotropin stimulation. Fertility and Sterility 89:912−21

doi: 10.1016/j.fertnstert.2007.04.034
[34]

Franco MC, Ricart KC, Gonzalez AS, Dennys CN, Nelson PA, et al. 2015. Nitration of Hsp90 on tyrosine 33 regulates mitochondrial metabolism. Journal of Biological Chemistry 290:19055−66

doi: 10.1074/jbc.M115.663278
[35]

Franco MC, Ye Y, Refakis CA, Feldman JL, Stokes AL, et al. 2013. Nitration of Hsp90 induces cell death. Proceedings of the National Academy of Sciences of the United States of America 110:E1102−E1111

doi: 10.1073/pnas.1215177110
[36]

Lei K, Wei Q, Cheng Y, Wang Z, Wu H, et al. 2023. OONO/MMP2/MMP9 pathway-mediated apoptosis of porcine granulosa cells is associated with DNA damage. Reproduction 165:431−43

doi: 10.1530/REP-22-0295
[37]

Wei Q, Shi F. 2013. Cleavage of poly (ADP-ribose) polymerase-1 is involved in the process of porcine ovarian follicular atresia. Animal Reproduction Science 138:282−91

doi: 10.1016/j.anireprosci.2013.02.025
[38]

Yousefi S, Soleimanirad J, Hamdi K, Farzadi L, Ghasemzadeh A, et al. 2018. Distinct effect of fetal bovine serum versus follicular fluid on multipotentiality of human granulosa cells in in vitro condition. Biologicals 52:44−48

doi: 10.1016/j.biologicals.2018.01.002
[39]

Dupont S, Krust A, Gansmuller A, Dierich A, Chambon P, et al. 2000. Effect of single and compound knockouts of estrogen receptors α (ERα) and β (ERβ) on mouse reproductive phenotypes. Development 127:4277−91

doi: 10.1242/dev.127.19.4277
[40]

Britt KL, Drummond AE, Cox VA, Dyson M, Wreford NG, et al. 2000. An age-related ovarian phenotype in mice with targeted disruption of the Cyp 19 (aromatase) gene. Endocrinology 141:2614−23

doi: 10.1210/endo.141.7.7578
[41]

Mukhopadhyay AK, Holstein K, Szkudlinski M, Brunswig-Spickenheier B, Leidenberger FA. 1991. The relationship between prorenin levels in follicular fluid and follicular atresia in bovine ovaries. Endocrinology 129:2367−75

doi: 10.1210/endo-129-5-2367
[42]

Banerjee A, Anjum S, Verma R, Krishna A. 2012. Alteration in expression of estrogen receptor isoforms alpha and beta, and aromatase in the testis and its relation with changes in nitric oxide during aging in mice. Steroids 77:609−20

doi: 10.1016/j.steroids.2012.02.004
[43]

Vallcaneras S, Morales L, Delsouc MB, Ramirez D, Filippa V, et al. 2022. Interplay between nitric oxide and gonadotrophin-releasing hormone in the neuromodulation of the corpus luteum during late pregnancy in the rat. Reproductive Biology and Endocrinology 20:19

doi: 10.1186/s12958-022-00894-6
[44]

Masuda M, Kubota T, Aso T. 2001. Effects of nitric oxide on steroidogenesis in porcine granulosa cells during different stages of follicular development. European Journal of Endocrinology 144:303−8

doi: 10.1530/eje.0.1440303
[45]

Jefcoate CR, Lee J. 2018. Cholesterol signaling in single cells: lessons from STAR and sm-FISH. Journal of Molecular Endocrinology 60:R213−R235

doi: 10.1530/JME-17-0281
[46]

Elustondo P, Martin LA, Karten B. 2017. Mitochondrial cholesterol import. Biochimica et Biophysica Acta (BBA) − Molecular and Cell Biology of Lipids 1862:90−101

doi: 10.1016/j.bbalip.2016.08.012
[47]

Hu MC, Hsu HJ, Guo IC, Chung BC. 2004. Function of Cyp11a1 in animal models. Molecular and Cellular Endocrinology 215:95−100

doi: 10.1016/j.mce.2003.11.024
[48]

Coirini H, Gouézou M, Delespierre B, Schumacher M, Guennoun R. 2003. 3 Beta-hydroxysteroid dehydrogenase isomerase (3β-HSD) activity in the rat sciatic nerve: kinetic analysis and regulation by steroids. Journal of Steroid Biochemistry and Molecular Biology 85:89−94

doi: 10.1016/S0960-0760(03)00133-X
[49]

Oktem O, Akin N, Bildik G, Yakin K, Alper E, et al. 2017. FSH Stimulation promotes progesterone synthesis and output from human granulosa cells without luteinization. Human Reproduction 32:643−52

doi: 10.1093/humrep/dex010
[50]

Zachos NC, Billiar RB, Albrecht ED, Pepe GJ. 2003. Developmental regulation of follicle-stimulating hormone receptor messenger RNA expression in the baboon fetal ovary. Biology of Reproduction 68:1911−17

doi: 10.1095/biolreprod.102.011494
[51]

Bhartiya D, Patel H. 2021. An overview of FSH-FSHR biology and explaining the existing conundrums. Journal of Ovarian Research 14:144

doi: 10.1186/s13048-021-00880-3
[52]

Lai WA, Yeh YT, Fang WL, Wu LS, Harada N, et al. 2014. Calcineurin and CRTC2 mediate FSH and TGFβ1 upregulation of Cyp19a1 and Nr5a in ovary granulosa cells. Journal of Molecular Endocrinology 53:259−70

doi: 10.1530/JME-14-0048
[53]

Fa S, Pogrmic-Majkic K, Samardzija D, Glisic B, Kaisarevic S, et al. 2013. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells. Toxicology and Applied Pharmacology 270:1−8

doi: 10.1016/j.taap.2013.03.031
[54]

de Souza DK, Salles LP, Camargo R, Gulart LVM, Costa ESS, et al. 2018. Effects of PI3K and FSH on steroidogenesis, viability and embryo development of the cumulus-oocyte complex after in vitro culture. Zygote 26:50−61

doi: 10.1017/S0967199417000703
[55]

Zhou G, Hu RK, Xia GC, Yan SH, Ren QL, et al. 2019. Tyrosine nitrations impaired intracellular trafficking of FSHR to the cell surface and FSH-induced Akt-FoxO3a signaling in human granulosa cells. Aging 11:3094−116

doi: 10.18632/aging.101964
[56]

Yamamoto H, Yamashita Y, Saito N, Hayashi A, Hayashi M, et al. 2017. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility. Journal of Obstetrics and Gynaecology Research 43:1021−28

doi: 10.1111/jog.13307
[57]

da Rocha FAC, de Brum-Fernandes AJ. 2002. Evidence that peroxynitrite affects human osteoblast proliferation and differentiation. Journal of Bone and Mineral Research 17:434−42

doi: 10.1359/jbmr.2002.17.3.434
[58]

Lillo MA, Himelman E, Shirokova N, Xie LH, Fraidenraich D, et al. 2019. S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 4:e130091

doi: 10.1172/jci.insight.130091
[59]

Kameritsch P, Khandoga N, Nagel W, Hundhausen C, Lidington D, et al. 2005. Nitric oxide specifically reduces the permeability of Cx37-containing gap junctions to small molecules. Journal of Cellular Physiology 203:233−42

doi: 10.1002/jcp.20218