[1]

Ippolito JA, Cui L, Kammann C, Wrage-Mönnig N, Estavillo JM, et al. 2020. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: a comprehensive meta-data analysis review. Biochar 2:421−438

doi: 10.1007/s42773-020-00067-x
[2]

Fahmy TYA, Fahmy Y, Mobarak F, El-Sakhawy M, Abou-Zeid RE. 2020. Biomass pyrolysis: past, present, and future. Environment, Development and Sustainability 22:17−32

doi: 10.1007/s10668-018-0200-5
[3]

Qiu B, Tao X, Wang H, Li W, Ding X, et al. 2021. Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review. Journal of Analytical and Applied Pyrolysis 155:105081

doi: 10.1016/j.jaap.2021.105081
[4]

Yu H, Zou W, Chen J, Chen H, Yu Z, et al. 2019. Biochar amendment improves crop production in problem soils: a review. Journal of Environmental Management 232:8−21

doi: 10.1016/j.jenvman.2018.10.117
[5]

Oni BA, Oziegbe O, Olawole OO. 2019. Significance of biochar application to the environment and economy. Annals of Agricultural Sciences 64:222−236

doi: 10.1016/j.aoas.2019.12.006
[6]

Xu L, Zhao F, Peng J, Ji M, Li BL. 2025. A comprehensive review of the application and potential of straw biochar in the remediation of heavy metal-contaminated soil. Toxics 13:69

doi: 10.3390/toxics13020069
[7]

Rajamony RK, Suraparaju SK, Kalidasan B, Yadav A, Pandey AK, et al. 2025. Energizing solar still efficiency with eco-friendly coconut shell biochar enhanced organic phase change material. Separation and Purification Technology 360:131200

doi: 10.1016/j.seppur.2024.131200
[8]

Lin G, Wang Y, Wu X, Meng J, Ok YS, et al. 2025. Enhancing agricultural productivity with biochar: evaluating feedstock and quality standards. Bioresource Technology Reports 29:102059

doi: 10.1016/j.biteb.2025.102059
[9]

Atinafu DG, Choi JY, Nam J, Kang Y, Kim S. 2025. Insights into the effects of biomass feedstock and pyrolysis conditions on the energy storage capacity and durability of standard biochar-based phase-change composites. Biochar 7:18

doi: 10.1007/s42773-024-00396-1
[10]

Monteiro MDS, dos Santos MVQ, dos Santos de Almeida W, Martins T, Wisniewski A, et al. 2025. Non-conventional electrode based on cattle manure biochar applied in electrocatalytic reactions for the evolution of low-carbon hydrogen. Fuel 381:133619

doi: 10.1016/j.fuel.2024.133619
[11]

Behnami A, Pourakbar M, Ayyar AS, Lee JW, Gagnon G, et al. 2024. Treatment of aqueous per- and poly-fluoroalkyl substances: a review of biochar adsorbent preparation methods. Chemosphere 357:142088

doi: 10.1016/j.chemosphere.2024.142088
[12]

Saletnik B, Zaguła G, Bajcar M, Tarapatskyy M, Bobula G, et al. 2019. Biochar as a multifunctional component of the environment—a review. Applied Sciences 9:1139

doi: 10.3390/app9061139
[13]

Kumar P, Singhania RR, Sumathi Y, Kurrey NK, Chen CW, et al. 2025. Investigating innovative techniques for biochar modification to enhance the removal of heavy metals from aqueous environments: a comprehensive review. Clean Technologies and Environmental Policy 27:3271−3293

doi: 10.1007/s10098-024-02962-4
[14]

Zhang C, Liu L, Zhao M, Rong H, Xu Y. 2018. The environmental characteristics and applications of biochar. Environmental Science and Pollution Research 25:21525−21534

doi: 10.1007/S11356-018-2521-1
[15]

Lan W, Zhao X, Wang Y, Jin X, Ji J, et al. 2024. Research progress of biochar modification technology and its application in environmental remediation. Biomass and Bioenergy 184:107178

doi: 10.1016/j.biombioe.2024.107178
[16]

Chen H, Gao Y, Li J, Fang Z, Bolan N, et al. 2022. Engineered biochar for environmental decontamination in aquatic and soil systems: a review. Carbon Research 1:4

doi: 10.1007/s44246-022-00005-5
[17]

Liang Y, Zhao B, Yuan C. 2022. Adsorption of atrazine by Fe-Mn-modified biochar: the dominant mechanism of ππ interaction and pore structure. Agronomy 12:3097

doi: 10.3390/agronomy12123097
[18]

Diao ZH, Zhang WX, Liang JY, Huang ST, Dong FX, et al. 2021. Removal of herbicide atrazine by a novel biochar based iron composite coupling with peroxymonosulfate process from soil: synergistic effect and mechanism. Chemical Engineering Journal 409:127684

doi: 10.1016/j.cej.2020.127684
[19]

Cao Y, Jiang S, Kang X, Zhang H, Zhang Q, et al. 2021. Enhancing degradation of atrazine by Fe-phenol modified biochar/ferrate(VI) under alkaline conditions: analysis of the mechanism and intermediate products. Chemosphere 285:131399

doi: 10.1016/j.chemosphere.2021.131399
[20]

Tan X, Liu Y, Zeng G, Wang X, Hu X, et al. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70−85

doi: 10.1016/j.chemosphere.2014.12.058
[21]

Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, et al. 2014. Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19−33

doi: 10.1016/j.chemosphere.2013.10.071
[22]

Yaashikaa PR, Kumar PS, Varjani S, Saravanan A. 2020. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports 28:e00570

doi: 10.1016/j.btre.2020.e00570
[23]

Mohan D, Sarswat A, Ok YS, Pittman CU Jr. 2014. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresource Technology 160:191−202

doi: 10.1016/j.biortech.2014.01.120
[24]

Leng L, Xiong Q, Yang L, Li H, Zhou Y, et al. 2021. An overview on engineering the surface area and porosity of biochar. Science of The Total Environment 763:144204

doi: 10.1016/j.scitotenv.2020.144204
[25]

Cui R, Shen Y, Zhang Z, Huang Q, Zhu J, et al. 2025. Mechanochemical remediation of heavy metal-polluted soil by ball milling with monocalcium phosphate. Journal of Environmental Chemical Engineering 13:118373

doi: 10.1016/j.jece.2025.118373
[26]

Yu X, Wu S, Zhang Z, Wang C. 2025. Application of ball milling technology in removal of PFAS and ball milling modified materials: a review. Journal of Hazardous Materials Advances 18:100709

doi: 10.1016/j.hazadv.2025.100709
[27]

Islam MS, Kwak JH, Nzediegwu C, Wang S, Palansuriya K, et al. 2021. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. Environmental Pollution 281:117094

doi: 10.1016/j.envpol.2021.117094
[28]

Wang RZ, Huang DL, Liu YG, Zhang C, Lai C, et al. 2020. Synergistic removal of copper and tetracycline from aqueous solution by steam-activated bamboo-derived biochar. Journal of Hazardous Materials 384:121470

doi: 10.1016/j.jhazmat.2019.121470
[29]

Zhang Y, Wan Y, Zheng Y, Yang Y, Huang J, et al. 2023. Potassium permanganate modification of hydrochar enhances sorption of Pb(II), Cu(II), and Cd(II). Bioresource Technology 386:129482

doi: 10.1016/j.biortech.2023.129482
[30]

Ambika S, Kumar M, Pisharody L, Malhotra M, Kumar G, et al. 2022. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: mechanisms, methods, and prospects. Chemical Engineering Journal 439:135716

doi: 10.1016/j.cej.2022.135716
[31]

Qi C, Zhang C, Yang Z, Liu N, Gao Y, et al. 2025. Acid-modified biochar-based bacterial fertilizer and increase soil available phosphorus. Journal of Soils and Sediments 25:59−66

doi: 10.1007/s11368-024-03937-0
[32]

Zhu X, Wang Z, Teng Y, Sun Y, Wang W, et al. 2024. Green modification of biochar with poly(aspartic acid) enhances the remediation of Cd and Pb in water and soil. Journal of Environmental Management 370:122642

doi: 10.1016/j.jenvman.2024.122642
[33]

Xia X, Riaz M, Babar S, Li Y, Wang X, et al. 2024. Acid-modified cotton straw biochar has instructive for the improvement of saline-alkali soil. Journal of Soils and Sediments 24:2334−2348

doi: 10.1007/s11368-024-03800-2
[34]

Hawryluk-Sidoruk M, Raczkiewicz M, Krasucka P, Duan W, Mašek O, et al. 2024. Effect of biochar chemical modification (acid, base and hydrogen peroxide) on contaminants content depending on feedstock and pyrolysis conditions. Chemical Engineering Journal 481:148329

doi: 10.1016/j.cej.2023.148329
[35]

Mosleh MH, Rajabi H. 2024. NaOH-benzoic acid modified biochar for enhanced removal of aromatic VOCs. Separation and Purification Technology 330:125453

doi: 10.1016/j.seppur.2023.125453
[36]

Liao X, Mao S, Gao W, Wang S, Hu J, et al. 2025. Risk of increasing soil nitrous oxide emissions by chemical oxidation modification on biochar. Journal of Environmental Management 375:124336

doi: 10.1016/j.jenvman.2025.124336
[37]

Paredes-Laverde M, Paniagua-Macias J, Serna-Galvis EA, Torres-Palma RA. 2025. Biochar from agro-industrial wastes as carbocatalysts in advanced oxidation processes for pollutant degradation—novel insights. In Innovative and Hybrid Advanced Oxidation Processes for Water Treatment. ed. Hamdaoui O. Amsterdam: Elsevier. pp. 371−387 doi: 10.1016/b978-0-443-14100-3.00002-8

[38]

Tomczyk A, Kondracki B, Szewczuk-Karpisz K. 2023. Chemical modification of biochars as a method to improve its surface properties and efficiency in removing xenobiotics from aqueous media. Chemosphere 312:137238

doi: 10.1016/j.chemosphere.2022.137238
[39]

Uppuluri NST, Ran X, Guo J, Müller J. 2025. Enhanced phosphorus recovery from digestate via solid-liquid separation using Mg2+ and Ca2+ modified biochar. Bioresource Technology 427:132409

doi: 10.1016/j.biortech.2025.132409
[40]

Naidu Subramaniam M, Zhou S, Zhang G, Manayil JC, Wu Z. 2025. Enhancing nanofiltration in thin film nanocomposite membranes using bi-metal modified biochar nanofillers. Separation and Purification Technology 352:128236

doi: 10.1016/j.seppur.2024.128236
[41]

Wang J, Riaz M, Babar S, Xia H, Li Y, et al. 2023. Iron-modified biochar reduces nitrogen loss and improves nitrogen retention in Luvisols by adsorption and microbial regulation. Science of The Total Environment 879:163196

doi: 10.1016/j.scitotenv.2023.163196
[42]

Li G, Ceng S, Sun S, Xu K, Bian D. 2021. Preparation of biochar supported iron oxides composites and its application in water treatment. Chemical Industry and Engineering Progress 40:917−931

[43]

Han M, Liu Z, Huang S, Zhang H, Yang H, et al. 2024. Application of biochar-based materials for effective pollutant removal in wastewater treatment. Nanomaterials 14:1933

doi: 10.3390/nano14231933
[44]

Subramanian P, Pandian K, Pakkiyam S, Dhanuskodi KV, Annamalai S, et al. 2025. Biochar for heavy metal cleanup in soil and water: a review. Biomass Conversion and Biorefinery 15:11421−11441

doi: 10.1007/s13399-024-05989-1
[45]

Dai J, Meng X, Zhang Y, Huang Y. 2020. Effects of modification and magnetization of rice straw derived biochar on adsorption of tetracycline from water. Bioresource Technology 311:123455

doi: 10.1016/j.biortech.2020.123455
[46]

Jiang T, Pervez MN, Ilango AK, Ravi YK, Zhang W, et al. 2024. Magnetic surfactant-modified clay for enhanced adsorption of mixtures of per- and polyfluoroalkyl substances (PFAS) in snowmelt: improving practical applicability and efficiency. Journal of Hazardous Materials 471:134390

doi: 10.1016/j.jhazmat.2024.134390
[47]

Jiang Z, Li J, Jiang D, Gao Y, Chen Y, et al. 2020. Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: reactivity, radical production and transformation pathway. Environmental Research 184:109260

doi: 10.1016/j.envres.2020.109260
[48]

Lyu H, Gao B, He F, Ding C, Tang J, et al. 2017. Ball-milled carbon nanomaterials for energy and environmental applications. ACS Sustainable Chemistry & Engineering 5:9568−9585

doi: 10.1021/acssuschemeng.7b02170
[49]

Huang J, Chen H, Zheng Y, Yang Y, Zhang Y, et al. 2021. Microplastic pollution in soils and groundwater: characteristics, analytical methods and impacts. Chemical Engineering Journal 425:131870

doi: 10.1016/j.cej.2021.131870
[50]

Wang J, Wang S. 2019. Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production 227:1002−1022

doi: 10.1016/j.jclepro.2019.04.282
[51]

He X, Hong ZN, Jiang J, Dong G, Liu H, et al. 2021. Enhancement of Cd(II) adsorption by rice straw biochar through oxidant and acid modifications. Environmental Science and Pollution Research 28:42787−42797

doi: 10.1007/s11356-021-13742-8
[52]

Liu C, Wang W, Wu R, Liu Y, Lin X, et al. 2020. Preparation of acid-and alkali-modified biochar for removal of methylene blue pigment. ACS Omega 5:30906−30922

doi: 10.1021/acsomega.0c03688
[53]

Hafeez A, Pan T, Tian J, Cai K. 2022. Modified biochars and their effects on soil quality: a review. Environments 9:60

doi: 10.3390/environments9050060
[54]

El-Nemr MA, Abdelmonem NM, Ismail IMA, Ragab S, El Nemr A. 2020. Ozone and ammonium hydroxide modification of biochar prepared from Pisum sativum peels improves the adsorption of copper (II) from an aqueous medium. Environmental Processes 7:973−1007

doi: 10.1007/s40710-020-00455-2
[55]

Li L, Han J, Huang X, Qiu S, Liu X, et al. 2023. Organic pollutants removal from aqueous solutions using metal-organic frameworks (MOFs) as adsorbents: a review. Journal of Environmental Chemical Engineering 11:111217

doi: 10.1016/j.jece.2023.111217
[56]

Zhang Y, Zheng Y, Yang Y, Huang J, Zimmerman AR, et al. 2021. Mechanisms and adsorption capacities of hydrogen peroxide modified ball milled biochar for the removal of methylene blue from aqueous solutions. Bioresource Technology 337:125432

doi: 10.1016/j.biortech.2021.125432
[57]

Karunanayake AG, Todd OA, Crowley M, Ricchetti L, Pittman Jr CU, et al. 2018. Lead and cadmium remediation using magnetized and nonmagnetized biochar from Douglas fir. Chemical Engineering Journal 331:480−491

doi: 10.1016/j.cej.2017.08.124
[58]

Son EB, Poo KM, Chang JS, Chae KJ. 2018. Heavy metal removal from aqueous solutions using engineered magnetic biochars derived from waste marine macro-algal biomass. Science of The Total Environment 615:161−168

doi: 10.1016/j.scitotenv.2017.09.171
[59]

Li H, Yu L, Chen Z, Xiao B, Jin K. 2024. The characteristics of adsorption Cr(VI) by iron-modified and iron-doped phosphorus-based biochar biochar. Green Chemistry Letters and Reviews 17:2329607

doi: 10.1080/17518253.2024.2329607
[60]

Ni Z, Zhou L, Lin Z, Kuang B, Zhu G, et al. 2023. Iron-modified biochar boosts anaerobic digestion of sulfamethoxazole pharmaceutical wastewater: performance and microbial mechanism. Journal of Hazardous Materials 452:131314

doi: 10.1016/j.jhazmat.2023.131314
[61]

Ou W, Lan X, Guo J, Cai A, Liu P, et al. 2023. Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater. Journal of Cleaner Production 383:135468

doi: 10.1016/j.jclepro.2022.135468
[62]

El-Bestawy EA, Gaber M, Shokry H, Samy M. 2023. Effective degradation of atrazine by spinach-derived biochar via persulfate activation system: process optimization, mechanism, degradation pathway and application in real wastewater. Environmental Research 229:115987

doi: 10.1016/j.envres.2023.115987
[63]

Liang Y, Tao R, Zhao B, Meng Z, Cheng Y, et al. 2024. Roles of iron and manganese in bimetallic biochar composites for efficient persulfate activation and atrazine removal. Biochar 6:41

doi: 10.1007/s42773-024-00331-4
[64]

Kumar M, Xiong X, Wan Z, Sun Y, Tsang DCW, et al. 2020. Ball milling as a mechanochemical technology for fabrication of novel biochar nanomaterials. Bioresource Technology 312:123613

doi: 10.1016/j.biortech.2020.123613
[65]

Amusat SO, Kebede TG, Dube S, Nindi MM. 2021. Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: a review. Journal of Water Process Engineering 41:101993

doi: 10.1016/j.jwpe.2021.101993
[66]

Shao J, Zhang J, Zhang X, Feng Y, Zhang H, et al. 2018. Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation. Fuel 224:138−146

doi: 10.1016/j.fuel.2018.03.064
[67]

Pallarés J, González-Cencerrado A, Arauzo I. 2018. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy 115:64−73

doi: 10.1016/j.biombioe.2018.04.015
[68]

Tao Q, Li B, Chen Y, Zhao J, Li Q, et al. 2021. An integrated method to produce fermented liquid feed and biologically modified biochar as cadmium adsorbents using corn stalks. Waste Management 127:112−120

doi: 10.1016/j.wasman.2021.04.027
[69]

Xu Y, Wu S, Huang F, Huang H, Yi Z, et al. 2022. Biomodification of feedstock for quality-improved biochar: a green method to enhance the Cd sorption capacity of Miscanthus lutarioriparius-derived biochar. Journal of Cleaner Production 350:131241

doi: 10.1016/j.jclepro.2022.131241
[70]

Muhammad H, Wei T, Cao G, Yu S, Ren X, et al. 2021. Study of soil microorganisms modified wheat straw and biochar for reducing cadmium leaching potential and bioavailability. Chemosphere 273:129644

doi: 10.1016/j.chemosphere.2021.129644
[71]

Zhang M, Gao B, Yao Y, Xue Y, Inyang M. 2012. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal 210:26−32

doi: 10.1016/j.cej.2012.08.052
[72]

Yin S, Yi H, Liu M, Yang J, Yang S, et al. 2024. An in situ exploration of how Fe/N/C oxygen reduction catalysts evolve during synthesis under pyrolytic conditions. Nature Communications 15:6229

doi: 10.1038/s41467-024-50629-x
[73]

Wang Y, Li J, Xu L, Wu D, Li Q, et al. 2024. EDTA functionalized Mg/Al hydroxides modified biochar for Pb(II) and Cd(II) removal: adsorption performance and mechanism. Separation and Purification Technology 335:126199

doi: 10.1016/j.seppur.2023.126199
[74]

Peng Z, Fan Z, Chen X, Zhou X, Gao ZF, et al. 2022. Fabrication of nano iron oxide-modified biochar from co-hydrothermal carbonization of microalgae and Fe(II) salt for efficient removal of rhodamine B. Nanomaterials 12:2271

doi: 10.3390/nano12132271
[75]

Fang Y, Ni X, Xiao Q, Huang S, López-Valdivieso A. 2025. Iron-based materials synthesized by mechanical ball milling for environmental contaminants removal: progress and prospects. International Journal of Environmental Research 19:12

doi: 10.1007/s41742-024-00671-w
[76]

Zhang H, Cheng Z, Hu K, Shen B, Lyu H, et al. 2025. Atmosphere regulation: unraveling effective strategies for creating high-performance iron ore/biochar composite nanomaterials in ball milling processes. Biochar 7:82

doi: 10.1007/s42773-025-00474-y
[77]

Qiu M, Liu L, Ling Q, Cai Y, Yu S, et al. 2022. Biochar for the removal of contaminants from soil and water: a review. Biochar 4:19

doi: 10.1007/s42773-022-00146-1
[78]

Wei J, Wang L, Liu Y, Ding D, Li Q, et al. 2024. Synergistic ultra-high adsorption and oxidation of arsenic in groundwater by iron-modified biochar: mechanisms and potential application. Chemical Engineering Journal 499:156281

doi: 10.1016/j.cej.2024.156281
[79]

Xu L, Dong J, Bai Y, Liu Y, Li T, et al. 2025. Iron modified biochar derived from diverse feedstock: enhancing denitrification and mechanistic insights into the detoxification and removal of Cu2+ and Pb2+. Journal of Hazardous Materials 495:139126

doi: 10.1016/j.jhazmat.2025.139126
[80]

Wang T, Zhao R, Wang Z, Wang Y, Cheng W, et al. 2024. Insights into iron-induced structural changes in N-rich biochar for facilitating efficient organic pollutants removal by peroxymonosulfate activation: cooperation of enrichment and degradation. Separation and Purification Technology 346:127486

doi: 10.1016/j.seppur.2024.127486
[81]

Wang X, Zou T, Lian J, Chen Y, Cheng L, et al. 2025. Simultaneous mitigation of cadmium contamination and greenhouse gas emissions in paddy soil by iron-modified biochar. Journal of Hazardous Materials 488:137430

doi: 10.1016/j.jhazmat.2025.137430
[82]

Huang H, Zheng Y, Wei D, Yang G, Peng X, et al. 2022. Efficient removal of pefloxacin from aqueous solution by acid–alkali modified sludge-based biochar: adsorption kinetics, isotherm, thermodynamics, and mechanism. Environmental Science and Pollution Research 29:43201−43211

doi: 10.1007/s11356-021-18220-9
[83]

Yan L, Gao G, Lu M, Riaz M, Zhang M, et al. 2024. Insight into the amelioration effect of nitric acid-modified biochar on saline soil physicochemical properties and plant growth. Plants 13:3434

doi: 10.3390/plants13233434
[84]

Zhang S, Wang Y, Wang Y, Bai X. 2025. Adsorption effect of sodium dihydrogen phosphate-modified kaolin on heavy metals during MSW pyrolysis. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 47:755−769

doi: 10.1080/15567036.2024.2445122
[85]

Jiang L, Yi X, Yang K, Li M, Rao H, et al. 2023. Comparison of adsorption behavior of Pb(II) by acid–alkali and chitosan modified biochar derived from kiwifruit branch. Human and Ecological Risk Assessment: An International Journal 29:410−426

doi: 10.1080/10807039.2022.2098467
[86]

Tan Y, Wang J, Zhan L, Yang H, Gong Y. 2024. Removal of Cr(VI) from aqueous solution using ball mill modified biochar: multivariate modeling, optimization and experimental study. Scientific Reports 14:4853

doi: 10.1038/s41598-024-55520-9
[87]

Jiang F, Liu M, Li S, Liang M, Hu X, et al. 2024. Mechanism study on the immobilization of Cu2+/Pb2+ in aqueous phase by mineral co-milling-modified biochar. Langmuir 40:17897−17908

doi: 10.1021/acs.langmuir.4c00948
[88]

Yang X, Luo S, Zhou J, Sun P, Guo Y, et al. 2025. Ball-milled dysprosium oxide loaded biochar-montmorillonite composite for efficient removal and great recycling performance of cationic organic pollutants. Industrial Crops and Products 235:121777

doi: 10.1016/j.indcrop.2025.121777
[89]

Nan H, Huang R, Zhang X, Wang C. 2024. How does ball-milling elevate biochar as a value-added peroxydisulfate activator for antibiotics removal? Industrial Crops and Products 214:118569

doi: 10.1016/j.indcrop.2024.118569
[90]

Su J, Guo Z, Zhang M, Xie Y, Shi R, et al. 2024. Mn-modified bamboo biochar improves soil quality and immobilizes heavy metals in contaminated soils. Environmental Technology & Innovation 34:103630

doi: 10.1016/j.eti.2024.103630
[91]

Mu R, Qian S, Ma Y, Deng Z, Tang J, et al. 2024. Functionally-designed metal salt and ball milling co-modified sludge biochar for adsorptive removal of trace level sulfamethoxazole: behavior, characterization, mechanism and dft study. Journal of Environmental Chemical Engineering 12:113479

doi: 10.1016/j.jece.2024.113479
[92]

Su JZ, Feng XN, Xiang P, Guo ZL, Li LX, et al. 2024. Remediation of multi-metal (loid) contaminated soils using Mn-modified biochar: mechanistic insights and influencing factors. Process Safety and Environmental Protection 192:36−48

doi: 10.1016/j.psep.2024.09.115
[93]

Kabir E, Kim KH, Kwon EE. 2023. Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science 11:1324533

doi: 10.3389/fenvs.2023.1324533
[94]

Yang F, Jiang Y, Dai M, Hou X, Peng C. 2022. Active biochar-supported iron oxides for Cr(VI) removal from groundwater: kinetics, stability and the key role of FeO in electron-transfer mechanism. Journal of Hazardous Materials 424:127542

doi: 10.1016/j.jhazmat.2021.127542
[95]

Ye Z, Wang C, Xia P, Xu A. 2025. Sustainable electro-Fenton system for water/wastewater treatment. In Management of Water Resources Using Electrochemical Methods, eds. Liu G, Jiang Y, Zhang C. Boca Raton: CRC Press. pp. 59−86 doi: 10.1201/9781003515753

[96]

Yang Y, Ma P, Li Y, Chen Y, Zhang H. 2024. Sludge-derived biochar improves sludge electro-dewatering performance: conductivity analysis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 701:134838

doi: 10.1016/j.colsurfa.2024.134838
[97]

Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR. 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89:1467−1471

doi: 10.1016/j.chemosphere.2012.06.002
[98]

Sharma G, Verma Y, Lai CW, Naushad M, Iqbal J, et al. 2024. Biochar and biosorbents derived from biomass for arsenic remediation. Heliyon 10:e36288

doi: 10.1016/j.heliyon.2024.e36288
[99]

Dong X, Ma LQ, Li Y. 2011. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of Hazardous Materials 190:909−915

doi: 10.1016/j.jhazmat.2011.04.008
[100]

Al Masud MA, Samaraweera H, Mondol MMH, Septian A, Kumar R, Terry LG. 2025. Iron biochar synergy in aquatic systems through surface functionalities electron transfer and reactive species dynamics. npj Clean Water 8:46

doi: 10.1038/s41545-025-00471-5
[101]

Wang Y, Fang W, Cheng M, Li W, Cen Q, et al. 2025. A review on the application of iron-carbon composites prepared from red mud and organic solid waste for wastewater treatment. Desalination 614:119202

doi: 10.1016/j.desal.2025.119202
[102]

Meng F, Wang Y, Wei Y. 2025. Advancements in biochar for soil remediation of heavy metals and/or organic pollutants. Materials 18:1524

doi: 10.3390/ma18071524
[103]

Fdez-Sanromán A, Pazos M, Rosales E, Sanromán MA. 2020. Unravelling the environmental application of biochar as low-cost biosorbent: a review. Applied Sciences 10:7810

doi: 10.3390/app10217810
[104]

Frank JR, Brown TR, Malmsheimer RW, Volk TA, Ha H. 2020. The financial trade-off between the production of biochar and biofuel via pyrolysis under uncertainty. Biofuels, Bioproducts and Biorefining 14:594−604

doi: 10.1002/bbb.2092
[105]

Tang L, Yu J, Pang Y, Zeng G, Deng Y, et al. 2018. Sustainable efficient adsorbent: alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal 336:160−169

doi: 10.1016/j.cej.2017.11.048
[106]

Yan L, Liu Y, Zhang Y, Liu S, Wang C, et al. 2020. ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology 297:122381

doi: 10.1016/j.biortech.2019.122381
[107]

Zhao W, Zhang Z, Xin Y, Xiao R, Gao F, et al. 2024. Na2S-modified biochar for Hg(II) removal from wastewater: a techno-economic assessment. Fuel 356:129641

doi: 10.1016/j.fuel.2023.129641
[108]

Zhang M, Liu R, Huang J, Si W, Wang G, et al. 2025. Life cycle assessment and environmental benefit analysis of a modified biochar system for heavy metal wastewater treatment. Journal of Water Process Engineering 76:108072

doi: 10.1016/j.jwpe.2025.108072
[109]

Maroušek J, Kolář L, Strunecký O, Kopecký M, Bartoš P, et al. 2020. Modified biochars present an economic challenge to phosphate management in wastewater treatment plants. Journal of Cleaner Production 272:123015

doi: 10.1016/j.jclepro.2020.123015
[110]

Chen M, Liu Y, Pan J, Jiang Y, Zou X, et al. 2024. Low-cost Ca/Mg co-modified biochar for effective phosphorus recovery: adsorption mechanisms, resourceful utilization, and life cycle assessment. Chemical Engineering Journal 502:157993

doi: 10.1016/j.cej.2024.157993
[111]

Nguyen MV, Lee BK. 2015. Removal of dimethyl sulfide from aqueous solution using cost-effective modified chicken manure biochar produced from slow pyrolysis. Sustainability 7:15057−15072

doi: 10.3390/su71115057
[112]

Chen G, Jin Y, Lu J. 2024. Experimental study on adsorption of SO2 and DCM from air pollutants by modified biochar. Biomass Conversion and Biorefinery 14:15705−15719

doi: 10.1007/s13399-023-03864-z
[113]

Yao Q, Yang Z, Nie C, Chen M, Sun X, et al. 2024. Online in-situ modification of biochar for the efficient removal of elemental mercury and co-benefit of SO2/NO removal. Chemical Engineering Journal 499:156565

doi: 10.1016/j.cej.2024.156565
[114]

Liao J, Hu A, Zhao Z, Liu X, Jiang C, et al. 2021. Biochar with large specific surface area recruits N2O-reducing microbes and mitigate N2O emission. Soil Biology and Biochemistry 156:108212

doi: 10.1016/j.soilbio.2021.108212
[115]

Abbas HMM, Rais U, Altaf MM, Rasul F, Shah A, et al. 2024. Microbial-inoculated biochar for remediation of salt and heavy metal contaminated soils. Science of The Total Environment 954:176104

doi: 10.1016/j.scitotenv.2024.176104
[116]

Zhou Y, Gu G, Zhang J, Zhang Y, Peng C, et al. 2025. Chloride-induced electron enrichment strategy: stabilization mechanism and efficacy of calcium/magnesium modified biochar against chromium contamination in soil. Environmental Research 285:122622

doi: 10.1016/j.envres.2025.122622
[117]

Fakhar A, Galgo SJC, Canatoy RC, Rafique M, Sarfraz R, et al. 2025. Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. Biochar 7:8

doi: 10.1007/s42773-024-00397-0
[118]

Kapoor A, Sharma R, Kumar A, Sepehya S. 2022. Biochar as a means to improve soil fertility and crop productivity: a review. Journal of Plant Nutrition 45:2380−2388

doi: 10.1080/01904167.2022.2027980
[119]

Bolan N, Hoang SA, Beiyuan J, Gupta S, Hou D, et al. 2022. Multifunctional applications of biochar beyond carbon storage. International Materials Reviews 67:150−200

doi: 10.1080/09506608.2021.1922047
[120]

El-Naggar A, Lee SS, Rinklebe J, Farooq M, Song H, et al. 2019. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma 337:536−554

doi: 10.1016/j.geoderma.2018.09.034
[121]

Tatarková V, Hiller E, Vaculík M. 2013. Impact of wheat straw biochar addition to soil on the sorption, leaching, dissipation of the herbicide (4-chloro-2-methylphenoxy) acetic acid and the growth of sunflower (Helianthus annuus L.). Ecotoxicology and Environmental Safety 92:215−221

doi: 10.1016/j.ecoenv.2013.02.005
[122]

Yavari S, Kamyab H, Asadpour R, Yavari S, Sapari NB, et al. 2023. The fate of imazapyr herbicide in the soil amended with carbon sorbents. Biomass Conversion and Biorefinery 13:7561−7569

doi: 10.1007/s13399-021-01587-7
[123]

Manna S, Singh N. 2019. Biochars mediated degradation, leaching and bioavailability of pyrazosulfuron-ethyl in a sandy loam soil. Geoderma 334:63−71

doi: 10.1016/j.geoderma.2018.07.032
[124]

Yang X, Wan Y, Zheng Y, He F, Yu Z, et al. 2019. Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: a critical review. Chemical Engineering Journal 366:608−621

doi: 10.1016/j.cej.2019.02.119
[125]

Huang J, Zimmerman AR, Chen H, Wan Y, Zheng Y, et al. 2022. Fixed bed column performance of Al-modified biochar for the removal of sulfamethoxazole and sulfapyridine antibiotics from wastewater. Chemosphere 305:135475

doi: 10.1016/j.chemosphere.2022.135475
[126]

Schmidt HP, Pandit BH, Martinsen V, Cornelissen G, Conte P, et al. 2015. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 5:723−741

doi: 10.3390/agriculture5030723
[127]

Major J, Rondon M, Molina D, Riha SJ, Lehmann J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and soil 333:117−128

doi: 10.1007/s11104-010-0327-0
[128]

Hagemann N, Joseph S, Schmidt HP, Kammann CI, Harter J, et al. 2017. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nature Communications 8:1089

doi: 10.1038/s41467-017-01123-0
[129]

Khan S, Irshad S, Mehmood K, Hasnain Z, Nawaz M, et al. 2024. Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: a review. Plants 13:166

doi: 10.3390/plants13020166
[130]

Guo L, Zhao L, Tang Y, Zhou J, Shi B. 2022. An iron-based biochar for persulfate activation with highly efficient and durable removal of refractory dyes. Journal of Environmental Chemical Engineering 10:106979

doi: 10.1016/j.jece.2021.106979
[131]

Tyagi U, Anand N. 2022. Sustainable and eco-friendly biomass derived biochars for the removal of contaminants from wastewater: current status and perspectives. In Biochar - Productive Technologies, Properties and Applications. eds. Bartoli M, Giorcelli M, Tagliaferro A. London: IntechOpen. doi: 10.5772/intechopen.105534

[132]

Algethami JS, Irshad MK, Javed W, Alhamami MAM, Ibrahim M. 2023. Iron-modified biochar improves plant physiology, soil nutritional status and mitigates pb and cd-hazard in wheat (Triticum aestivum L.). Frontiers in Plant Science 14:1221434

doi: 10.3389/fpls.2023.1221434
[133]

Galaburda M, Bosacka A, Sternik D, Oranska O, Borysenko M, et al. 2023. Physicochemical and sorption characteristics of carbon biochars based on lignin and industrial waste magnetic iron dust. Water 15:189

doi: 10.3390/w15010189
[134]

Yang W, Feng G, Miles D, Gao L, Jia Y, et al. 2020. Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Science of The Total Environment 729:138752

doi: 10.1016/j.scitotenv.2020.138752