[1]

Ishimaru T, Xaiyalath S, Nallathambi J, Sathishraj R, Yoshimoto M, et al. 2016. Quantifying rice spikelet sterility in potential heat-vulnerable regions: field surveys in Laos and southern India. Field Crops Research 190:3−9

doi: 10.1016/j.fcr.2015.08.006
[2]

Jagadish SK, Murty MR, Quick WP. 2015. Rice responses to rising temperatures–challenges, perspectives and future directions. Plant, Cell & Environment 38:1686−98

doi: 10.1111/pce.12430
[3]

Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F. 2013. Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology 170:206−15

doi: 10.1016/j.agrformet.2011.09.002
[4]

Lesk C, Rowhani P, Ramankutty N. 2016. Influence of extreme weather disasters on global crop production. Nature 529:84−87

doi: 10.1038/nature1646
[5]

Wang YN, Cai TG, Li Y, Dai WC, Lin D, et al. 2025. Warming exacerbates the effects of pesticides on the soil collembolan gut microbiome and antibiotic resistome. Journal of Hazardous Materials 492:138294

doi: 10.1016/j.jhazmat.2025.138294
[6]

Lin D, Du S, Zhao Z, Zhang T, Wang L, et al. 2025. Climate warming fuels the global antibiotic resistome by altering soil bacterial traits. Nature Ecology & Evolution 9:1512−26

doi: 10.1038/s41559-025-02740-5
[7]

Simanjuntak C, Gaiser T, Ahrends HE, Ceglar A, Singh M, et al. 2023. Impact of climate extreme events and their causality on maize yield in South Africa. Scientific Reports 13:12462

doi: 10.1038/s41598-023-38921-0
[8]

Zhang Z, Yang Z, Fahad S, Zhang T, Xu W, et al. 2020. A hot-blast warming facility for simulating global warming in low-stature crop systems and its application case to assess elevated temperature effects on rice in Central China. Plant Methods 16:1−15

doi: 10.1186/s13007-020-00598-1
[9]

Poorter H, Fiorani F, Pieruschka R, Wojciechowski T, van der Putten WH, et al. 2016. Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytologist 212:838−55

doi: 10.1111/nph.14243
[10]

Drijfhout S, Bathiany S, Beaulieu C, Brovkin V, Claussen M, et al. 2015. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proceedings of the National Academy of Sciences of the United States of America 112:E5777−E5786

doi: 10.1073/pnas.1511451112
[11]

Frei ER, Schnell L, Vitasse Y, Wohlgemuth T, Moser B. 2020. Assessing the effectiveness of in-situ active warming combined with open top chambers to study plant responses to climate change. Frontiers in Plant Science 11:539584

doi: 10.3389/fpls.2020.539584
[12]

Grant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, et al. 2017. Evolution caused by extreme events. Philosophical Transactions of the Royal Society B, Biological Sciences 372:20160146

doi: 10.1098/rstb.2016.0146
[13]

Lei C, Zhou SYD, Tissue DT, Neilson R, Lie Z, et al. 2025. Seasonal variation of phyllosphere microbial communities under warming. Global Change Biology 31:e70270

doi: 10.1111/gcb.70270
[14]

Allen LH, Boote KJ, Jones JW, Jones PH, Pickering NB, et al. 2020. Sunlit, controlled‐environment chambers are essential for comparing plant responses to various climates. Agronomy Journal 112:4531−49

doi: 10.1002/agj2.20428
[15]

Bailey LD, van de Pol M. 2016. Tackling extremes: challenges for ecological and evolutionary research on extreme climatic events. Journal of Animal Ecology 85:85−96

doi: 10.1111/1365-2656.12451
[16]

Potvin C, Tardif S. 1988. Sources of variability and experimental designs in growth chambers. Functional Ecology 2:123−30

doi: 10.2307/2389472
[17]

Zhang S, Huangfu Q, Zhu D, Chen Z. 2025. Floating iron biofilms as hidden barriers to methane emissions in wetlands. The Innovation Geoscience 3:100161

doi: 10.59717/j.xinn-geo.2025.100161
[18]

Langstroff A, Heuermann MC, Stahl A, Junker A. 2022. Opportunities and limits of controlled-environment plant phenotyping for climate response traits. Theoretical and Applied Genetics 135:1−16

doi: 10.1007/s00122-021-03892-1
[19]

Liu L, Hoogenboom G, Ingram KT. 2000. Controlled-environment sunlit plant growth chambers. Critical Reviews in Plant Sciences 19:347−75

doi: 10.1080/07352680091139268
[20]

Hanson PJ, Riggs JS, Nettles WR, Phillips JR, Krassovski MB, et al. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences 14:861−83

doi: 10.5194/bg-14-861-2017
[21]

Heuermann MC, Knoch D, Junker A, Altmann T. 2023. Natural plant growth and development achieved in the IPK PhenoSphere by dynamic environment simulation. Nature Communications 14:5783

doi: 10.1038/s41467-023-41332-4
[22]

Perkins-Kirkpatrick SE, Lewis SC. 2020. Increasing trends in regional heatwaves. Nature Communications 11:3357

doi: 10.1038/s41467-020-16970-7
[23]

Zampieri M, Ceglar A, Dentener F, Toreti A. 2017. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environmental Research Letters 12:064008

doi: 10.1088/1748-9326/aa723b
[24]

Willis MJ. 1999. Proportional-integral-derivative control. Lecture notes. Department of Chemical and Process Engineering, University of Newcastle upon Tyne, UK. http://educypedia.karadimov.info/library/PID.pdf

[25]

Jensen ME. 1973. Consumptive use of water and irrigation water requirements: a report. New York, USA: American Society of Civil Engineers. https://lccn.loc.gov/77367164 (Accessed on August 20, 2025)

[26]

Burman R, Pochop LO. 1994. Evaporation, evapotranspiration and climatic data. Amsterdam, New York: Elsevier. pp. 251−70

[27]

Xiong Z, Xiong D, Yang D, Cui K, Peng S, et al. 2022. Effects of contrasting N supplies on leaf photosynthetic induction under fluctuating light in rice (Oryza sativa L.). Physiologia Plantarum 174:e13636

doi: 10.1111/ppl.13636
[28]

Matsuda R, Ohashi-Kaneko K, Fujiwara K, Goto E, Kurata K. 2004. Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. Plant & Cell Physiology 45:1870−74

doi: 10.1093/pcp/pch203
[29]

Wang X, Cai C, Song L, Zhou W, Yang X, et al. 2024. Responses of rice grain yield and quality to factorial combinations of ambient and elevated CO2 and temperature in T-FACE environments. Field Crops Research 309:109328

doi: 10.1016/j.fcr.2024.109328
[30]

Yan H, Wang C, Liu K, Tian X. 2021. Detrimental effects of heat stress on grain weight and quality in rice (Oryza sativa L.) are aggravated by decreased relative humidity. PeerJ 9:e11218

doi: 10.7717/peerj.11218