[1]

Li Q, Zhou D, Chu M, Liu Z, Yang L, et al. 2025. A comprehensive understanding on the anionic redox chemistry of high-voltage cathode materials for high-energy-density lithium-ion batteries. Chemical Society Reviews 54:3441−3474

doi: 10.1039/D4CS00797B
[2]

Lyu Y, Wu X, Wang K, Feng Z, Cheng T, et al. 2021. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Advanced Energy Materials 11:2000982

doi: 10.1002/aenm.202000982
[3]

Liu W, Oh P, Liu X, Lee MJ, Cho W, et al. 2015. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angewandte Chemie International Edition 54:4440−4457

doi: 10.1002/anie.201409262
[4]

Wang L, Wang J, Lu Y, Fang S, Yang C, et al. 2025. A review of Ni-based layered oxide cathode materials for alkali-ion batteries. Chemical Society Reviews 54:4419−4467

doi: 10.1039/D3CS00911D
[5]

Li M, Lu J, Chen Z, Amine K. 2018. 30 years of lithium-ion batteries. Advanced Materials 30:1800561

doi: 10.1002/adma.201800561
[6]

Chen D, Ahn J, Chen G. 2021. An overview of cation-disordered lithium-excess rocksalt cathodes. ACS Energy Letters 6:1358−1376

doi: 10.1021/acsenergylett.1c00203
[7]

Zhang H, Gao X, Cai Q, Zhang X, Tian Y, et al. 2023. Recent progress and perspectives on cation disordered rock-salt material for advanced Li-ion batteries. Journal of Materials Chemistry A 11:8426−8452

doi: 10.1039/D3TA00852E
[8]

Guin S, Ghosh S, Sarkar SS, Maitra U. 2024. Reviewing Li-rich disordered rocksalts as next-generation high-energy cathode material. Chemistry of Materials 36:10421−10450

doi: 10.1021/acs.chemmater.4c00469
[9]

Hau HM, Holstun T, Lee E, Rinkel BLD, Mishra TP, et al. 2025. Disordered rocksalts as high-energy and earth-abundant Li-ion cathodes. Advanced Materials 00:2502766

doi: 10.1002/adma.202502766
[10]

Li H, Fong R, Woo M, Ahmed H, Seo DH, et al. 2022. Toward high-energy Mn-based disordered-rocksalt Li-ion cathodes. Joule 6:53−91

doi: 10.1016/j.joule.2021.11.005
[11]

Clément RJ, Lun Z, Ceder G. 2020. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy & Environmental Science 13:345−373

doi: 10.1039/C9EE02803J
[12]

Lee J, Kitchaev DA, Kwon DH, Lee CW, Papp JK, et al. 2018. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 556:185−190

doi: 10.1038/s41586-018-0015-4
[13]

Ji H, Wu J, Cai Z, Liu J, Kwon DH, et al. 2020. Ultrahigh power and energy density in partially ordered lithium-ion cathode materials. Nature Energy 5:213−221

doi: 10.1038/s41560-020-0573-1
[14]

Yabuuchi N, Takeuchi M, Nakayama M, Shiiba H, Ogawa M, et al. 2015. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proceedings of the National Academy of Sciences of the United States of America 112:7650−7655

doi: 10.1073/pnas.1504901112
[15]

Yabuuchi N, Nakayama M, Takeuchi M, Komaba S, Hashimoto Y, et al. 2016. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nature Communications 7:13814

doi: 10.1038/ncomms13814
[16]

Luo M, Zheng S, Wu J, Zhou K, Zuo W, et al. 2020. Identifying the anionic redox activity in cation-disordered Li1.25Nb0.25Fe0.50O2/C oxide cathodes for Li-ion batteries. Journal of Materials Chemistry A 8:5115−5127

doi: 10.1039/C9TA11739C
[17]

Yue Y, Li N, Li L, Foley EE, Fu Y, et al. 2020. Redox behaviors in a Li-excess cation-disordered Mn–Nb–O–F rocksalt cathode. Chemistry of Materials 32:4490−4498

doi: 10.1021/acs.chemmater.9b05221
[18]

Yue Y, Ha Y, Huang TY, Li N, Li L, et al. 2021. Interplay between cation and anion redox in Ni-based disordered rocksalt cathodes. ACS Nano 15:13360−13369

doi: 10.1021/acsnano.1c03289
[19]

Wang Q, Yao Z, Wang J, Guo H, Li C, et al. 2024. Chemical short-range disorder in lithium oxide cathodes. Nature 629:341−347

doi: 10.1038/s41586-024-07362-8
[20]

Clément RJ, Kitchaev D, Lee J, Ceder G. 2018. Short-range order and unusual modes of nickel redox in a fluorine-substituted disordered rocksalt oxide lithium-ion cathode. Chemistry of Materials 30:6945−6956

doi: 10.1021/acs.chemmater.8b03794
[21]

Liao J, Chen H, Xie Y, Li Z, Tan S, et al. 2025. Modeling short-range order in high-entropy cation-disordered rocksalt-type cathodes. Advanced Energy Materials 15:2501857

doi: 10.1002/aenm.202501857
[22]

Jones MA, Reeves PJ, Seymour ID, Cliffe MJ, Dutton SE, et al. 2019. Short-range ordering in a battery electrode, the 'cation-disordered' rocksalt Li1.25Nb0.25Mn0.5O2. Chemical Communications 55:9027−9030

doi: 10.1039/C9CC04250D
[23]

Squires AG, Scanlon DO. 2023. Understanding the limits to short-range order suppression in many-component disordered rock salt lithium-ion cathode materials. Journal of Materials Chemistry A 11:13765−13773

doi: 10.1039/d3ta02088f
[24]

Lee J, Urban A, Li X, Su D, Hautier G, et al. 2014. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519−522

doi: 10.1126/science.1246432
[25]

Freire M, Kosova NV, Jordy C, Chateigner D, Lebedev OI, et al. 2016. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nature Materials 15:173−177

doi: 10.1038/nmat4479
[26]

Yan P, Zheng J, Gu M, Xiao J, Zhang JG, et al. 2017. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications 8:14101

doi: 10.1038/ncomms14101
[27]

Lu X, Sun Y, Jian Z, He X, Gu L, et al. 2012. New insight into the atomic structure of electrochemically delithiated O3-Li(1–x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Letters 12:6192−6197

doi: 10.1021/nl303036e
[28]

Urban A, Abdellahi A, Dacek S, Artrith N, Ceder G. 2017. Electronic-structure origin of cation disorder in transition-metal oxides. Physical Review Letters 119:176402

doi: 10.1103/PhysRevLett.119.176402
[29]

Chen D, Wu J, Papp JK, McCloskey BD, Yang W, et al. 2020. Role of redox-inactive transition-metals in the behavior of cation-disordered rocksalt cathodes. Small 16:2000656

doi: 10.1002/smll.202000656
[30]

Urban A, Lee J, Ceder G. 2014. The configurational space of rocksalt-type oxides for high-capacity lithium battery electrodes. Advanced Energy Materials 4:1400478

doi: 10.1002/aenm.201400478
[31]

Ji H, Urban A, Kitchaev DA, Kwon DH, Artrith N, et al. 2019. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nature Communications 10:592

doi: 10.1038/s41467-019-08490-w
[32]

Lee J, Wang C, Malik R, Dong Y, Huang Y, et al. 2021. Determining the criticality of Li-excess for disordered-rocksalt Li-ion battery cathodes. Advanced Energy Materials 11:2100204

doi: 10.1002/aenm.202100204
[33]

Lun Z, Ouyang B, Cai Z, Clément RJ, Kwon DH, et al. 2020. Design principles for high-capacity Mn-based cation-disordered rocksalt cathodes. Chem 6:153−168

doi: 10.1016/j.chempr.2019.10.001
[34]

Chen D, Kan WH, Chen G. 2019. Understanding performance degradation in cation-disordered rock-salt oxide cathodes. Advanced Energy Materials 9:1901255

doi: 10.1002/aenm.201901255
[35]

Chen D, Ahn J, Self E, Nanda J, Chen G. 2021. Understanding cation-disordered rocksalt oxyfluoride cathodes. Journal of Materials Chemistry A 9:7826−7837

doi: 10.1039/D0TA12179G
[36]

Kim B, Zhong P, Choi Y, Anand S, Hau HM, et al. 2025. Oxygen dimerization-driven cation migration induces voltage hysteresis in disordered rocksalt cathodes. Journal of the American Chemical Society 147:223−233

doi: 10.1021/jacs.4c09070
[37]

Reitano A, Kunz S, Xu M, Suard E, Bianchini M. 2024. Phase stability and charge compensation in disordered rock salt compounds based on nickel and titanium. Journal of Materials Chemistry A 12:15731−15743

doi: 10.1039/D4TA02265C
[38]

Crafton MJ, Yue Y, Huang TY, Tong W, McCloskey BD. 2020. Anion reactivity in cation-disordered rocksalt cathode materials: the influence of fluorine substitution. Advanced Energy Materials 10:2001500

doi: 10.1002/aenm.202001500
[39]

McColl K, House RA, Rees GJ, Squires AG, Coles SW, et al. 2022. Transition metal migration and O2 formation underpin voltage hysteresis in oxygen-redox disordered rocksalt cathodes. Nature Communications 13:5275

doi: 10.1038/s41467-022-32983-w
[40]

Lee J, Papp JK, Clément RJ, Sallis S, Kwon DH, et al. 2017. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials. Nature Communications 8:981

doi: 10.1038/s41467-017-01115-0
[41]

Ouyang B, Artrith N, Lun Z, Jadidi Z, Kitchaev DA, et al. 2020. Effect of fluorination on lithium transport and short-range order in disordered-rocksalt-type lithium-ion battery cathodes. Advanced Energy Materials 10:1903240

doi: 10.1002/aenm.201903240
[42]

Kan WH, Deng B, Xu Y, Shukla AK, Bo T, et al. 2018. Understanding the effect of local short-range ordering on lithium diffusion in Li1.3Nb0.3Mn0.4O2 single-crystal cathode. Chem 4:2108−2123

doi: 10.1016/j.chempr.2018.05.008
[43]

Seo DH, Lee J, Urban A, Malik R, Kang S, et al. 2016. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nature Chemistry 8:692−697

doi: 10.1038/nchem.2524
[44]

Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, et al. 2016. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nature Chemistry 8:684−691

doi: 10.1038/nchem.2471
[45]

Lee J, Seo DH, Balasubramanian M, Twu N, Li X, et al. 2015. A new class of high capacity cation-disordered oxides for rechargeable lithium batteries: Li–Ni–Ti–Mo oxides. Energy & Environmental Science 8:3255−3265

doi: 10.1039/C5EE02329G
[46]

Abouimrane A, Dambournet D, Chapman KW, Chupas PJ, Weng W, et al. 2012. A new class of lithium and sodium rechargeable batteries based on selenium and selenium–sulfur as a positive electrode. Journal of the American Chemical Society 134:4505−4508

doi: 10.1021/ja211766q
[47]

House RA, Marie JJ, Pérez-Osorio MA, Rees GJ, Boivin E, et al. 2021. The role of O2 in O-redox cathodes for Li-ion batteries. Nature Energy 6:781−789

doi: 10.1038/s41560-021-00780-2
[48]

Zhang R, Zhao S, Ophus C, Deng Y, Vachhani SJ, et al. 2019. Direct imaging of short-range order and its impact on deformation in Ti-6Al. Science Advances 5:eaax2799

doi: 10.1126/sciadv.aax2799
[49]

Abdellahi A, Urban A, Dacek S, Ceder G. 2016. Understanding the effect of cation disorder on the voltage profile of lithium transition-metal oxides. Chemistry of Materials 28:5373−5383

doi: 10.1021/acs.chemmater.6b01438
[50]

Li L, Ouyang B, Lun Z, Huo H, Chen D, et al. 2023. Atomic-scale probing of short-range order and its impact on electrochemical properties in cation-disordered oxide cathodes. Nature Communications 14:7448

doi: 10.1038/s41467-023-43356-2
[51]

Yu Z, Qu X, Dou A, Zhou Y, Su M, et al. 2021. Carbon-coated cation-disordered rocksalt-type transition metal oxide composites for high-energy Li-ion batteries. Ceramics International 47(2):1758−1765

doi: 10.1016/j.ceramint.2020.09.001
[52]

Ahn J, Ha Y, Satish R, Giovine R, Li L, et al. 2022. Exceptional cycling performance enabled by local structural rearrangements in disordered rocksalt cathodes. Advanced Energy Materials 12:2200426

doi: 10.1002/aenm.202200426
[53]

Gao Y, Park J, Liang X. 2020. Comprehensive study of Al- and Zr-modified LiNi0.8Mn0.1Co0.1O2 through synergy of coating and doping. ACS Applied Energy Materials 3:8978−8987

doi: 10.1021/acsaem.0c01420
[54]

Sun J, Sheng C, Cao X, Wang P, He P, et al. 2022. Restraining oxygen release and suppressing structure distortion in single-crystal Li-rich layered cathode materials. Advanced Functional Materials 32:2110295

doi: 10.1002/adfm.202110295
[55]

Hao Z, Sun H, Ni Y, Yang G, Yang Z, et al. 2024. Suppressing bulk strain and surface O2 release in Li-rich cathodes by just tuning the Li content. Advanced Materials 36:2307617

doi: 10.1002/adma.202307617
[56]

Geng J, Zou Z, Wang T, Zhang S, Zhong S, et al. 2023. Synthesis and electrochemical behavior of K+ and Mn2+ co-doped LiFePO4/C as a cathode material for lithium-ion batteries and the mechanism of modification. Journal of Electroanalytical Chemistry 933:117275

doi: 10.1016/j.jelechem.2023.117275
[57]

Tang W, Li A, Zhou G, Chen Z, Yang Z, et al. 2022. Structural stabilization of cation-disordered rock-salt cathode materials: coupling between a high-ratio inactive Ti4+ cation and a Mn2+/Mn4+ two-electron redox pair. ACS Applied Materials & Interfaces 14:38865−38874

doi: 10.1021/acsami.2c10652
[58]

Zhong P, Cai Z, Zhang Y, Giovine R, Ouyang B, et al. 2020. Increasing capacity in disordered rocksalt cathodes by Mg doping. Chemistry of Materials 32:10728−10736

doi: 10.1021/acs.chemmater.0c04109
[59]

Li Z, Zhang Z, Huang B, Wang H, He B, et al. 2022. Improved cycling performance of cation-disordered rock-salt Li1.2Ti0.4Mn0.4O2 cathode through Mo-doping and Al2O3-coating. Coatings 12(11):1613

doi: 10.3390/coatings12111613
[60]

Zheng S, Dou A, Su M, Liu Y. 2020. Influence of Nb doping on electrochemical performance of nanostructured cation disordered Li1+x/100Ni1/2–x/100Ti1/2–x/100Nb x/100O2 composites cathode for Li-ion batteries. Journal of Nanoscience and Nanotechnology 20:452−459

doi: 10.1166/jnn.2020.16884
[61]

Ahn J, Chen D, Chen G. 2020. A fluorination method for improving cation-disordered rocksalt cathode performance. Advanced Energy Materials 10:2001671

doi: 10.1002/aenm.202001671
[62]

Kan WH, Wei C, Chen D, Bo T, Wang BT, et al. 2019. Evolution of local structural ordering and chemical distribution upon delithiation of a rock salt–structured Li1.3Ta0.3Mn0.4O2 cathode. Advanced Functional Materials 29:1808294

doi: 10.1002/adfm.201808294
[63]

Hoshino S, Glushenkov AM, Ichikawa S, Ozaki T, Inamasu T, et al. 2017. Reversible three-electron redox reaction of Mo3+/Mo6+ for rechargeable lithium batteries. ACS Energy Letters 2:733−738

doi: 10.1021/acsenergylett.7b00037
[64]

Glazier SL, Li J, Zhou J, Bond T, Dahn JR. 2015. Characterization of disordered Li(1+x)Ti2xFe(1–3x)O2 as positive electrode materials in Li-ion batteries using percolation theory. Chemistry of Materials 27:7751−7756

doi: 10.1021/acs.chemmater.5b03530
[65]

Huang J, Ouyang B, Zhang Y, Yin L, Kwon DH, et al. 2023. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis. Nature Materials 22:353−361

doi: 10.1038/s41563-022-01467-z
[66]

Zheng S, Liu D, Tao L, Fan X, Liu K, et al. 2019. Electrochemistry and redox characterization of rock-salt-type lithium metal oxides Li1+z/3Ni1/2-z/2Ti1/2+z/6O2 for Li-ion batteries. Journal of Alloys and Compounds 773:1−10

doi: 10.1016/j.jallcom.2018.09.261
[67]

Heenan TMM, Wade A, Tan C, Parker JE, Matras D, et al. 2020. Identifying the origins of microstructural defects such as cracking within Ni-rich NMC811 cathode particles for lithium-ion batteries. Advanced Energy Materials 10:2002655

doi: 10.1002/aenm.202002655
[68]

Ali Cambaz M, Vinayan BP, Euchner H, Johnsen RE, Guda AA, et al. 2018. Design of nickel-based cation-disordered rock-salt oxides: the effect of transition metal (M = V, Ti, Zr) substitution in LiNi0.5M0.5O2 binary systems. ACS Applied Materials & Interfaces 10:21957−21964

doi: 10.1021/acsami.8b02266
[69]

House RA, Jin L, Maitra U, Tsuruta K, Somerville JW, et al. 2018. Lithium manganese oxyfluoride as a new cathode material exhibiting oxygen redox. Energy & Environmental Science 11:926−932

doi: 10.1039/C7EE03195E
[70]

Zhou K, Zheng S, Ren F, Wu J, Liu H, et al. 2020. Fluorination effect for stabilizing cationic and anionic redox activities in cation-disordered cathode materials. Energy Storage Materials 32:234−243

doi: 10.1016/j.ensm.2020.07.012
[71]

Baur C, Källquist I, Chable J, Chang JH, Johnsen RE, et al. 2019. Improved cycling stability in high-capacity Li-rich vanadium containing disordered rock salt oxyfluoride cathodes. Journal of Materials Chemistry A 7:21244−21253

doi: 10.1039/C9TA06291B
[72]

Li L, Lun Z, Chen D, Yue Y, Tong W, et al. 2021. Fluorination-enhanced surface stability of cation-disordered rocksalt cathodes for li-ion batteries. Advanced Functional Materials 31:2101888

doi: 10.1002/adfm.202101888
[73]

Li L, Ahn J, Yue Y, Tong W, Chen G, et al. 2022. Fluorination-enhanced surface stability of disordered rocksalt cathodes. Advanced Materials 34:2106256

doi: 10.1002/adma.202106256
[74]

Lun Z, Ouyang B, Kitchaev DA, Clément RJ, Papp JK, et al. 2019. Improved cycling performance of Li-excess cation-disordered cathode materials upon fluorine substitution. Advanced Energy Materials 9:1802959

doi: 10.1002/aenm.201802959
[75]

Kan WH, Chen D, Papp JK, Shukla AK, Huq A, et al. 2018. Unravelling solid-state redox chemistry in Li1.3Nb0.3Mn0.4O2 single-crystal cathode material. Chemistry of Materials 30:1655−1666

doi: 10.1021/acs.chemmater.7b05036
[76]

Xu K. 2014. Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews 114:11503−11618

doi: 10.1021/cr500003w
[77]

Zhang X, Belharouak I, Li L, Lei Y, Elam JW, et al. 2013. Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Advanced Energy Materials 3:1299−1307

doi: 10.1002/aenm.201300269
[78]

Yu Z, Huang H, Liu Y, Qu X, Zhou Y, et al. 2022. Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries. Nano Energy 96:107071

doi: 10.1016/j.nanoen.2022.107071
[79]

Huang B, Wang R, Gong Y, He B, Wang H. 2019. Enhanced cycling stability of cation disordered rock-salt Li1.2Ti0.4Mn0.4O2 material by surface modification with Al2O3. Frontiers in Chemistry 7:107

doi: 10.3389/fchem.2019.00107
[80]

Semykina DO, Morkhova YA, Kabanov AA, Mishchenko KV, Slobodyuk AB, et al. 2022. Effect of transition metal cations on the local structure and lithium transport in disordered rock-salt oxides. Physical Chemistry Chemical Physics 24:5823−5832

doi: 10.1039/D1CP04993C
[81]

Wu F, Dong J, Zhao J, Shi Q, Lu Y, et al. 2023. Reversible cationic-anionic redox in disordered rocksalt cathodes enabled by fluorination-induced integrated structure design. Journal of Energy Chemistry 82:158−169

doi: 10.1016/j.jechem.2023.03.048
[82]

Koirala KP, Jiang L, Patil S, Longo P, Liu Z, et al. 2024. Direct mapping of fluorine in cation disordered rocksalt cathodes. ACS Energy Letters 9:10−16

doi: 10.1021/acsenergylett.3c02154
[83]

Wu VC, Zhong P, Ong J, Yoshida E, Kwon A, et al. 2024. The limited incorporation and role of fluorine in Mn-rich disordered rocksalt cathodes. ACS Energy Letters 9:3027−3035

doi: 10.1021/acsenergylett.4c01075
[84]

Szymanski NJ, Lun Z, Liu J, Self EC, Bartel CJ, et al. 2023. Modeling short-range order in disordered rocksalt cathodes by pair distribution function analysis. Chemistry of Materials 35:4922−4934

doi: 10.1021/acs.chemmater.2c03827
[85]

Hau HM, Mishra T, Ophus C, Huang TY, Bustilo K, et al. 2024. Earth-abundant Li-ion cathode materials with nanoengineered microstructures. Nature Nanotechnology 19:1831−1839

doi: 10.1038/s41565-024-01787-y
[86]

Cai Z, Ouyang B, Hau HM, Chen T, Giovine R, et al. 2024. In situ formed partially disordered phases as earth-abundant Mn-rich cathode materials. Nature Energy 9:27−36

doi: 10.1038/s41560-023-01375-9
[87]

Patil S, Darbar D, Self EC, Malkowski T, Wu VC, et al. 2023. Alternate synthesis method for high-performance manganese rich cation disordered rocksalt cathodes. Advanced Energy Materials 13:2203207

doi: 10.1002/aenm.202203207
[88]

Blumenhofer I, Shirazi Moghadam Y, El Kharbachi A, Hu Y, Wang K, et al. 2023. Synthesis and structure stabilization of disordered rock Salt Mn/V-based oxyfluorides as cathode materials for Li-ion batteries. ACS Materials Au 3:132−142

doi: 10.1021/acsmaterialsau.2c00064
[89]

Chen H, Zhang Y, Zhao Y, Liao J, He J, et al. 2025. Chelator optimization enabled defect engineering for cation disordered rocksalt cathodes via solution-based synthesis method. Energy Storage Materials 75:103990

doi: 10.1016/j.ensm.2024.103990
[90]

Zhang Y, Chen H, Yu R, Yang W, He J, et al. 2024. Unlocking fast Li-ion transport in micrometer-sized Mn-based cation-disordered rocksalt cathodes. Journal of Energy Chemistry 99:645−653

doi: 10.1016/j.jechem.2024.08.012