[1]

Wei G, Zhang G, Li M, Zheng Y, Zheng W, et al. 2024. Panax notoginseng: panoramagram of phytochemical and pharmacological properties, biosynthesis, and regulation and production of ginsenosides. Horticulture Research 11:uhae170

doi: 10.1093/hr/uhae170
[2]

Su L, Li W, Chen X, Wang P, Liu D. 2024. Proline‐rich protein PRPL1 enhances Panax notoginseng defence against Fusarium solani by regulating reactive oxygen species balance and strengthening the cell wall barrier. Plant, Cell & Environment 47:2375−93

doi: 10.1111/pce.14886
[3]

Yang Y, Wei F, Li Z, Han F, Guan H, et al. 2023. Improper crop rotation may enrich soil‐borne pathogens of panax notoginseng. Journal of Phytopathology 171:567−76

doi: 10.1111/jph.13212
[4]

Zhou X, Luo C, Li K, Zhu D, Jiang L, et al. 2022. First report of Fusarium striatum causing root rot disease of Panax notoginseng in yunnan, China. Phyton-International Journal of Experimental Botany 91:13−20

doi: 10.32604/phyton.2022.016972
[5]

Lin C, Feng XL, Liu Y, Li ZC, Li XZ, et al. 2023. Bioinformatic analysis of secondary metabolite biosynthetic potential in pathogenic Fusarium. Journal of Fungi 9:850

doi: 10.3390/jof9080850
[6]

Wen T, Xie P, Liu H, Liu T, Zhao M, et al. 2023. Tapping the rhizosphere metabolites for the prebiotic control of soil-borne bacterial wilt disease. Nature Communications 14:4497

doi: 10.1038/s41467-023-40184-2
[7]

Ali Sulaiman M, Bello SK. 2024. Biological control of soil-borne pathogens in arid lands: a review. Journal of Plant Diseases and Protection 131:293−313

doi: 10.1007/s41348-023-00824-7
[8]

Liu Y, Zhang H, Wang J, Gao W, Sun X, et al. 2024. Nonpathogenic pseudomonas syringae derivatives and its metabolites trigger the plant “cry for help” response to assemble disease suppressing and growth promoting rhizomicrobiome. Nature Communications 15:1907

doi: 10.1038/s41467-024-46254-3
[9]

Wang W, Wang H, Zhang Z, Li W, Yin X, Long Y. 2024. Dual RNA sequencing during Trichoderma harzianum-Phytophthora capsici interaction reveals multiple biological processes involved in the inhibition and highlights the cell wall as a potential target. Pest Management Science 80:4533−42

doi: 10.1002/ps.8160
[10]

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. 2004. Trichoderma species — opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2:43−56

doi: 10.1038/nrmicro797
[11]

Contreras-Cornejo HA, Schmoll M, Esquivel-Ayala BA, González-Esquivel CE, Rocha-Ramírez V, et al. 2024. Mechanisms for plant growth promotion activated by Trichoderma in natural and managed terrestrial ecosystems. Microbiological Research 281:127621

doi: 10.1016/j.micres.2024.127621
[12]

Wang Z, Wang Z, Lu B, Quan X, Zhao G, et al. 2022. Antagonistic potential of Trichoderma as a biocontrol agent against Sclerotinia asari. Frontiers in Microbiology 13:997050

doi: 10.3389/fmicb.2022.997050
[13]

Lana M, Simón O, Velasco P, Rodríguez VM, Caballero P, et al. 2023. First study on the root endophytic fungus Trichoderma hamatum as an entomopathogen: Development of a fungal bioinsecticide against cotton leafworm ( Spodoptera littoralis). Microbiological Research 270:127334

doi: 10.1016/j.micres.2023.127334
[14]

Bansal R, Sahoo SA, Barvkar VT, Srivastava AK, Mukherjee PK. 2023. Trichoderma virens exerts herbicidal effect on Arabidopsis thaliana via modulation of amino acid metabolism. Plant Science 332:111702

doi: 10.1016/j.plantsci.2023.111702
[15]

Lodi RS, Peng C, Dong X, Deng P, Peng L. 2023. Trichoderma hamatum and its benefits. Journal of Fungi 9:994

doi: 10.3390/jof9100994
[16]

Tao C, Wang Z, Liu S, Lv N, Deng X, et al. 2023. Additive fungal interactions drive biocontrol of Fusarium wilt disease. New Phytologist 238:1198−214

doi: 10.1111/nph.18793
[17]

Woo SL, Hermosa R, Lorito M, Monte E. 2023. Trichoderma: a multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nature Reviews Microbiology 21:312−26

doi: 10.1038/s41579-022-00819-5
[18]

Wang CY, Gan D, Li CZ, Zhang SQ, Li BX, et al. 2022. A new highly oxygenated polyketide derivative from Trichoderma sp. and its antifungal activity. Chemistry & Biodiversity 19:e202200671

doi: 10.1002/cbdv.202200671
[19]

Cardoza RE, McCormick SP, Izquierdo-Bueno I, Martínez-Reyes N, Lindo L, et al. 2022. Identification of polyketide synthase genes required for aspinolide biosynthesis in Trichoderma arundinaceum. Applied Microbiology and Biotechnology 106:7153−71

doi: 10.1007/s00253-022-12182-9
[20]

Yu SF, Sun ZB, Li SD, Hu YF, Ren Q, et al. 2023. The adenylate cyclase-encoding gene crac is involved in Clonostachys rosea mycoparasitism. Journal of Fungi 9:861

doi: 10.3390/jof9080861
[21]

Yazid SNE, Tajudin NI, Razman NAA, Selamat J, Ismail SI, et al. 2023. Mycotoxigenic fungal growth inhibition and multi-mycotoxin reduction of potential biological control agents indigenous to grain maize. Mycotoxin Research 39:177−92

doi: 10.1007/s12550-023-00484-4
[22]

Hernández-Melchor DJ, Guerrero-Chávez AC, Ferrera-Rodríguez MR, Ferrera-Cerrato R, Larsen J, et al. 2023. Cellulase and chitinase activities and antagonism against Fusarium oxysporum f. sp. cubense race 1 of six Trichoderma strains isolated from Mexican maize cropping. Biotechnology Letters 45:387−400

doi: 10.1007/s10529-022-03343-x
[23]

Nazir N, Badri ZA, Bhat NA, Bhat FA, Sultan P, et al. 2022. Effect of the combination of biological, chemical control and agronomic technique in integrated management pea root rot and its productivity. Scientific Reports 12:11348

doi: 10.1038/s41598-022-15580-1
[24]

Rosolen RR, Horta MAC, de Azevedo PHC, da Silva CC, Sforca DA, et al. 2023. Whole-genome sequencing and comparative genomic analysis of potential biotechnological strains of Trichoderma harzianum, Trichoderma atroviride, and Trichoderma reesei. Molecular Genetics and Genomics 298:735−54

doi: 10.1007/s00438-023-02013-5
[25]

Sales LS, Andrade JP, Santana LL, Santos Conceição TD, Neto DS, et al. 2025. Redefining the clade Spirale of the genus Trichoderma by re-analyses of marker sequences and the description of new species. Fungal Biology 129:101529

doi: 10.1016/j.funbio.2024.101529
[26]

Feng XL, Zhang RQ, Wang DC, Dong WG, Wang ZX, et al. 2023. Genomic and metabolite profiling reveal a novel Streptomyces strain, QHH-9511, from the Qinghai-Tibet Plateau. Microbiology Spectrum 11:e0276422

doi: 10.1128/spectrum.02764-22
[27]

Zhang RQ, Feng XL, Wang ZX, Xie TC, Duan Y, et al. 2022. Genomic and metabolomic analyses of the medicinal fungus inonotus hispidus for its metabolite’s biosynthesis and medicinal application. Journal of Fungi 8:1245

doi: 10.3390/jof8121245
[28]

Wei J, Cheng M, Zhu JF, Zhang Y, Cui K, et al. 2023. Comparative genomic analysis and metabolic potential profiling of a novel culinary-medicinal mushroom, Hericium rajendrae (Basidiomycota). Journal of Fungi 9:1018

doi: 10.3390/jof9101018
[29]

Xie X, Zhao L, Song Y, Qiao Y, Wang ZX, et al. 2024. Genome-wide characterization and metabolite profiling of Cyathus olla: insights into the biosynthesis of medicinal compounds. BMC Genomics 25:618

doi: 10.1186/s12864-024-10528-3
[30]

Zhu X, Li S, Liu L, Li S, Luo Y, et al. 2020. Genome sequencing and analysis of Thraustochytriidae sp. SZU445 provides novel insights into the polyunsaturated fatty acid biosynthesis pathway. Marine Drugs 18:118

doi: 10.3390/md18020118
[31]

Nie H, Liao H, Wen J, Ling C, Zhang L, et al. 2024. Foeniculum vulgare essential oil nanoemulsion inhibits Fusarium oxysporum causing Panax notoginseng root-rot disease. Journal of Ginseng Research 48:236−44

doi: 10.1016/j.jgr.2023.12.002
[32]

Liu XY, Huo YY, Yang J, Li TT, Xu FR, et al. 2022. Integrated physiological, metabolomic, and proteome analysis of Alpinia officinarum Hance essential oil inhibits the growth of Fusarium oxysporum of Panax notoginseng. Frontiers in Microbiology 13:1031474

doi: 10.3389/fmicb.2022.1031474
[33]

Li H, Yang J, Zhang X, Xu X, Song F, et al. 2022. Biocontrol of Candida albicans by antagonistic microorganisms and bioactive compounds. antibiotics 11:1238

doi: 10.3390/antibiotics11091238
[34]

Sa R, He S, Han D, Liu M, Yu Y, et al. 2022. Isolation and identification of a new biocontrol bacteria against Salvia miltiorrhiza root rot and optimization of culture conditions for antifungal substance production using response surface methodology. BMC Microbiology 22:231

doi: 10.1186/s12866-022-02628-5
[35]

Karačić V, Miljaković D, Marinković J, Ignjatov M, Milošević D, et al. 2024. Bacillus species: excellent biocontrol agents against tomato diseases. Microorganisms 12:457

doi: 10.3390/microorganisms12030457
[36]

Natsiopoulos D, Topalidou E, Mantzoukas S, Eliopoulos PA. 2024. Endophytic Trichoderma: potential and prospects for plant health management. Pathogens 13:548

doi: 10.3390/pathogens13070548
[37]

Khosravi H, Khoshru B, Nosratabad AF, Mitra D. 2024. Exploring the landscape of biofertilizers containing plant growth-promoting rhizobacteria in Iran: Progress and research prospects. Current Research in Microbial Sciences 7:100268

doi: 10.1016/j.crmicr.2024.100268
[38]

Dunn MF, Becerra-Rivera VA. 2023. The biosynthesis and functions of polyamines in the interaction of plant growth-promoting rhizobacteria with plants. Plants 12:2671

doi: 10.3390/plants12142671
[39]

Wang Y, Piao F, Di Y, Xu J, Wang Z, et al. 2024. Serratia plymuthica HK9-3 enhances tomato resistance against Phytophthora capsici by modulating antioxidant defense systems and rhizosphere micro-ecological condition. Physiologia Plantarum 176:e14323

doi: 10.1111/ppl.14323
[40]

Benchlih S, Esmaeel Q, Aberkani K, Tahiri A, Belabess Z, et al. 2023. Modes of action of biocontrol agents and elicitors for sustainable protection against bacterial canker of tomato. Microorganisms 11:726

doi: 10.3390/microorganisms11030726
[41]

Wang Y, Liu Z, Hao X, Wang Z, Wang Z, et al. 2023. Biodiversity of the beneficial soil-borne fungi steered by Trichoderma-amended biofertilizers stimulates plant production. NPJ Biofilms and Microbiomes 9:46

doi: 10.1038/s41522-023-00416-1
[42]

Li Y, Yang R, Häggblom MM, Li M, Guo L, et al. 2022. Characterization of diazotrophic root endophytes in Chinese silvergrass (Miscanthus sinensis). Microbiome 10:186

doi: 10.1186/s40168-022-01379-9
[43]

Xiao C, Li L, Liu Y, Huang Y, Wang Y, et al. 2022. Inhibitory effect and mechanism of Trichoderma taxi and its metabolite on Trichophyton mentagrophyte. Journal of Fungi 8:1006

doi: 10.3390/jof8101006
[44]

Liu R, Chen M, Gao J, Luo M, Wang G. 2023. Identification of antagonistic fungi and their antifungal activities against aconite root rot pathogens. Plant Signaling & Behavior 18:2211852

doi: 10.1080/15592324.2023.2211852
[45]

Singh S, Singh AK, Pradhan B, Tripathi S, Kumar KS, et al. 2024. Harnessing Trichoderma mycoparasitism as a tool in the management of soil dwelling plant pathogens. Microbial Ecology 87:158

doi: 10.1007/s00248-024-02472-2
[46]

Akram S, Ahmed A, He P, He P, Liu Y, et al. 2023. Uniting the role of endophytic fungi against plant pathogens and their interaction. Journal of Fungi 9:72

doi: 10.3390/jof9010072
[47]

Zhang F, Yang X, Ran W, Shen Q. 2014. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5. FEMS Microbiology Letters 359:116−23

doi: 10.1111/1574-6968.12582
[48]

Rees HJ, Bashir N, Drakulic J, Cromey MG, Bailey AM, et al. 2021. Identification of native endophytic Trichoderma spp. for investigation of in vitro antagonism towards Armillaria mellea using synthetic‐and plant‐based substrates. Journal of Applied Microbiology 131:392−403

doi: 10.1111/jam.14938
[49]

Zhang H, Kong N, Liu B, Yang Y, Li C, et al. 2022. Biocontrol potential of Trichoderma harzianum CGMCC20739 (Tha739) against postharvest bitter rot of apples. Microbiological Research 265:127182

doi: 10.1016/j.micres.2022.127182
[50]

Huang BB, Gao MW, Li G, Ouyang MA, Chen QJ. 2023. Design, synthesis, structure–activity relationship, and three-dimensional quantitative structure–activity relationship of fusarium acid derivatives and analogues as potential fungicides. Journal of Agricultural and Food Chemistry 71:18566−77

doi: 10.1021/acs.jafc.3c04720
[51]

Macías-Rubalcava ML, Lappe-Oliveras P, Villanueva-Silva R. 2025. Disruption of cell wall and membrane integrity as antioomycete and antifungal mode of action by fusaric and 9, 10-dehydrofusaric acids from endophytic fungus fusarium lactis strain SME13-2. Journal of Applied Microbiology 136:lxae301

doi: 10.1093/jambio/lxae301
[52]

Karuppiah V, Natarajan S, Gangatharan M, Aldayel MF, Alsowayeh N, et al. 2022. Development of siderophore-based rhizobacterial consortium for the mitigation of biotic and abiotic environmental stresses in tomatoes: an in vitro and in planta approach. Journal of Applied Microbiology 133:3276−3287

doi: 10.1111/jam.15625
[53]

Sivaramakrishnan M, Veeraganti Naveen Prakash C, Chandrasekar B. 2024. Multifaceted roles of plant glycosyl hydrolases during pathogen infections: More to discover. Planta 259:113

doi: 10.1007/s00425-024-04391-5
[54]

Zhang H, Li Y, Ling J, Zhao J, Li Y, et al. 2024. NRPS-like ATRR in plant-parasitic nematodes involved in glycine betaine metabolism to promote parasitism. International Journal of Molecular Sciences 25:4275

doi: 10.3390/ijms25084275
[55]

Mathur V, Dokka N, Raghunathan G, Rathinam M, Parashar M, et al. 2025. Beyond bitter: plant triterpenoids in the battle against herbivorous insects. Journal of Experimental Botany 76:4441−57

doi: 10.1093/jxb/eraf238
[56]

Wu Y, Sun A, Chen F, Zhao Y, Zhu X, et al. 2024. Synthesis, structure–activity relationship and biological evaluation of indole derivatives as anti-Candida albicans agents. Bioorganic Chemistry 146:107293

doi: 10.1016/j.bioorg.2024.107293
[57]

Wang W, Wang M, Feng J, Zhang S, Chen Y, et al. 2024. Terpene synthase gene family in Chinese chestnut (Castanea mollissima BL.) harbors two sesquiterpene synthase genes implicated in defense against gall wasp Dryocosmus kuriphilus. Journal of Agricultural and Food Chemistry 72:1571−81

doi: 10.1021/acs.jafc.3c07086
[58]

Du Y, Li J, Chen S, Xia Y, Jin K. 2024. Pathogenicity analysis and comparative genomics reveal the different infection strategies between the generalist Metarhizium anisopliae and the specialist Metarhizium acridum. Pest Management Science 80:820−36

doi: 10.1002/ps.7812
[59]

Wang Q, Jiang J, Liang Y, Li S, Xia Y, et al. 2025. Expansion and functional divergence of terpene synthase genes in angiosperms: a driving force of terpene diversity. Horticulture Research 12:uhae272

doi: 10.1093/hr/uhae272
[60]

Zhang W, Ling M, Zhang K, Liu R, Huang X, et al. 2025. Complete genome sequence of the marine mangrove fungus Sarcopodium sp. QM3–1 confirmed its high potential for antimicrobial activity. Marine Genomics 79:101162

doi: 10.1016/j.margen.2024.101162