[1]

Wang J, Wang Z. 2020. Strengths, weaknesses, opportunities and threats (SWOT) analysis of China's prevention and control strategy for the COVID-19 epidemic. International Journal of Environmental Research and Public Health 17:2235

doi: 10.3390/ijerph17072235
[2]

Wiltshire DA, Vahora IS, Tsouklidis N, Kumar R, Khan S. 2020. H1N1 influenza virus in patients with cystic fibrosis: a literature review examining both disease entities and their association in light of the 2009 pandemic. Cureus 12:e9218

doi: 10.7759/cureus.9218
[3]

de Wit E, van Doremalen N, Falzarano D, Munster VJ. 2016. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology 14:523−534

doi: 10.1038/nrmicro.2016.81
[4]

Majumder J, Minko T. 2021. Recent developments on therapeutic and diagnostic approaches for COVID-19. The AAPS Journal 23:14

doi: 10.1208/s12248-020-00532-2
[5]

Al Hallak M, Verdier T, Bertron A, Roques C, Bailly JD. 2023. Fungal contamination of building materials and the aerosolization of particles and toxins in indoor air and their associated risks to health: a review. Toxins 15:175

doi: 10.3390/toxins15030175
[6]

Fakunle AG, Jafta N, Naidoo RN, Smit LAM. 2021. Association of indoor microbial aerosols with respiratory symptoms among under-five children: a systematic review and meta-analysis. Environmental Health: A Global Access Science Source 20:77

doi: 10.1186/s12940-021-00759-2
[7]

Wang Z, Yu T, Ye J, Tian L, Lin B, et al. 2024. A novel low sampling rate and cost-efficient active sampler for medium/long-term monitoring of gaseous pollutants. Journal of Hazardous Materials 461:132583

doi: 10.1016/j.jhazmat.2023.132583
[8]

Huang W, Gao CX, Luo D, Wang Y, Zheng X, et al. 2024. Risk evaluation of venue types and human behaviors of COVID-19 outbreaks in public indoor environments: a systematic review and meta-analysis. Environmental Pollution 341:122970

doi: 10.1016/j.envpol.2023.122970
[9]

Borges JT, Nakada LYK, Maniero MG, Guimarães JR. 2021. SARS-CoV-2: a systematic review of indoor air sampling for virus detection. Environmental Science and Pollution Research International 28:40460−40473

doi: 10.1007/s11356-021-13001-w
[10]

willeke K, Lin X, Grinshpun SA. 1998. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Science and Technology 28:439−456

doi: 10.1080/02786829808965536
[11]

Puthussery JV, Ghumra DP, McBrearty KR, Doherty BM, Sumlin BJ, et al. 2023. Real-time environmental surveillance of SARS-CoV-2 aerosols. Nature Communications 14:3692

doi: 10.1038/s41467-023-39419-z
[12]

Abeykoon AMH, Poon M, Firestone SM, Stevenson MA, Wiethoelter AK, et al. 2022. Performance evaluation and validation of air samplers to detect aerosolized Coxiella burnetii. Microbiology Spectrum 10:e0065522

doi: 10.1128/spectrum.00655-22
[13]

Chang CW, Ting YT, Horng YJ. 2019. Collection efficiency of liquid-based samplers for fungi in indoor air. Indoor Air 29:380−389

doi: 10.1111/ina.12535
[14]

Nazaroff WW. 2016. Indoor bioaerosol dynamics. Indoor Air 26:61−78

doi: 10.1111/ina.12174
[15]

Gu Z, Han J, Zhang L, Wang H, Luo X, et al. 2023. Unanswered questions on the airborne transmission of COVID-19. Environmental Chemistry Letters 21:725−739

doi: 10.1007/s10311-022-01557-z
[16]

Ahmed R, Vaishampayan A, Cuellar-Camacho JL, Wight DJ, Donskyi I, et al. 2020. Multivalent bacteria binding by flexible polycationic microsheets matching their surface charge density. Advanced Materials Interfaces 7:1902066

doi: 10.1002/admi.201902066
[17]

Mi X, Heldt CL. 2020. Single-particle chemical force microscopy to characterize virus surface chemistry. BioTechniques 69:363−370

doi: 10.2144/btn-2020-0085
[18]

Heldt CL, Zahid A, Vijayaragavan KS, Mi X. 2017. Experimental and computational surface hydrophobicity analysis of a non-enveloped virus and proteins. Colloids and Surfaces B: Biointerfaces 153:77−84

doi: 10.1016/j.colsurfb.2017.02.011
[19]

Scheuch G. 2020. Breathing is enough: for the spread of influenza virus and SARS-CoV-2 by breathing only. Journal of Aerosol Medicine and Pulmonary Drug Delivery 33:230−234

doi: 10.1089/jamp.2020.1616
[20]

Lähde A, Raula J, Kauppinen EI, Watanabe W, Ahonen PP, et al. 2006. Aerosol synthesis of inhalation particles via a droplet-to-particle method. Particulate Science and Technology 24:71−84

doi: 10.1080/02726350500403199
[21]

Niazi S, Philp LK, Spann K, Johnson GR. 2021. Utility of three nebulizers in investigating the infectivity of airborne viruses. Applied and Environmental Microbiology 87:e0049721

doi: 10.1128/AEM.00497-21
[22]

Penner T, Berger S, Niessner J, Dittler A. 2022. Generation, characterization, and comparison of human exhaled and technical aerosols for the evaluation of different air-purifying technologies against infectious aerosols. Journal of Occupational and Environmental Hygiene 19:646−662

doi: 10.1080/15459624.2022.2125520
[23]

Truyols Vives J, Muncunill J, Toledo Pons N, Baldoví HG, Sala Llinàs E, et al. 2022. SARS-CoV-2 detection in bioaerosols using a liquid impinger collector and ddPCR. Indoor Air 32:e13002

doi: 10.1111/ina.13002
[24]

Abeykoon AMH, Clark NJ, Soares Magalhaes RJ, Vincent GA, Stevenson MA, et al. 2021. Coxiella burnetii in the environment: a systematic review and critical appraisal of sampling methods. Zoonoses and Public Health 68:165−181

doi: 10.1111/zph.12791
[25]

Harnpicharnchai P, Pumkaeo P, Siriarchawatana P, Likhitrattanapisal S, Mayteeworakoon S, et al. 2023. AirDNA sampler: an efficient and simple device enabling high-yield, high-quality airborne environment DNA for metagenomic applications. PLoS One 18:e0287567

doi: 10.1371/journal.pone.0287567
[26]

Kim HR, An S, Hwang J. 2021. High air flow-rate electrostatic sampler for the rapid monitoring of airborne coronavirus and influenza viruses. Journal of Hazardous Materials 412:125219

doi: 10.1016/j.jhazmat.2021.125219
[27]

Lim JH, Nam SH, Kim J, Kim NH, Park GS, et al. 2021. High-volume sampler for size-selective sampling of bioaerosols including viruses. Atmospheric Environment 265:118720

doi: 10.1016/j.atmosenv.2021.118720
[28]

de Man P, Ortiz MA, Bluyssen PM, de Man SJ, Rentmeester MJ, et al. 2022. Airborne SARS-CoV-2 in home and hospital environments investigated with a high-powered air sampler. The Journal of Hospital Infection 119:126−131

doi: 10.1016/j.jhin.2021.10.018
[29]

Guo J, Lv M, Liu Z, Qin T, Qiu H, et al. 2024. Comprehensive performance evaluation of six bioaerosol samplers based on an aerosol wind tunnel. Environment International 183:108402

doi: 10.1016/j.envint.2023.108402
[30]

Su WC, Tolchinsky AD, Chen BT, Sigaev VI, Cheng YS. 2012. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments. Journal of environmental monitoring: JEM 14:2430−37

doi: 10.1039/c2em30299c
[31]

Guo F, Babauta JT, Beyenal H. 2021. The effect of additional salinity on performance of a phosphate buffer saline buffered three-electrode bioelectrochemical system inoculated with wastewater. Bioresource Technology 320:124291

doi: 10.1016/j.biortech.2020.124291
[32]

Borkakoty B, Jakharia A, Bali NK, Das Sarmah M, Hazarika R, et al. 2021. A preliminary evaluation of normal saline as an alternative to viral transport medium for COVID-19 diagnosis. The Indian Journal of Medical Research 153:684−688

doi: 10.4103/ijmr.IJMR_4346_20
[33]

Smee DF, Hurst BL, Evans WJ, Clyde N, Wright S, et al. 2017. Evaluation of cell viability dyes in antiviral assays with RNA viruses that exhibit different cytopathogenic properties. Journal of Virological Methods 246:51−57

doi: 10.1016/j.jviromet.2017.03.012
[34]

Verreault D, Moineau S, Duchaine C. 2008. Methods for sampling of airborne viruses. Microbiology and Molecular Biology Reviews 72:413−444

doi: 10.1128/MMBR.00002-08
[35]

Lindsley WG, Schmechel D, Chen BT. 2006. A two-stage cyclone using microcentrifuge tubes for personal bioaerosol sampling. Journal of Environmental Monitoring 8:1136−1142

doi: 10.1039/b609083d
[36]

Wang CS. 2001. Electrostatic forces in fibrous filters—a review. Powder Technology 118:166−170

doi: 10.1016/S0032-5910(01)00307-2
[37]

Tian Y, Wu Y, Zhang G, Chen H, Wu D, et al. 2022. Study on the collection efficiency of bioaerosol nanoparticles by andersen-type impactors. Journal of Biomedical Nanotechnology 18:319−326

doi: 10.1166/jbn.2022.3276
[38]

Pan M, Lednicky JA, Wu CY. 2019. Collection, particle sizing and detection of airborne viruses. Journal of Applied Microbiology 127:1596−1611

doi: 10.1111/jam.14278
[39]

Prussin AJ, Marr LC, Bibby KJ. 2014. Challenges of studying viral aerosol metagenomics and communities in comparison with bacterial and fungal aerosols. FEMS Microbiology Letters 357:1−9

doi: 10.1111/1574-6968.12487
[40]

Burton NC, Grinshpun SA, Reponen T. 2007. Physical collection efficiency of filter materials for bacteria and viruses. The Annals of Occupational Hygiene 51:143−151

doi: 10.1093/annhyg/mel073
[41]

Tseng C-C, Li C-S. 2005. Collection efficiencies of aerosol samplers for virus-containing aerosols. Journal of Aerosol Science 36:593−607

doi: 10.1016/j.jaerosci.2004.12.004
[42]

Fennelly KP. 2020. Particle sizes of infectious aerosols: implications for infection control. The Lancet Respiratory Medicine 8:914−924

doi: 10.1016/s2213-2600(20)30323-4
[43]

Hanlon J, Galea KS, Verpaele S. 2021. Review of workplace based aerosol sampler comparison studies, 2004−2020. International Journal of Environmental Research and Public Health 18:6819

doi: 10.3390/ijerph18136819
[44]

Geyh AS, Hering S, Kreisberg N, John W. 2004. Evaluation of a personal and microenvironmental aerosol speciation sampler (PMASS). Research Report 122. Health Effects Institute, Boston, US. pp. 1−22. www.healtheffects.org/publication/evaluation-personal-and-microenvironmental-aerosol-speciation-sampler-pmass

[45]

Mainelis G. 2020. Bioaerosol sampling: classical approaches, advances, and perspectives. Aerosol Science and Technology 54:496−519

doi: 10.1080/02786826.2019.1671950
[46]

Mbareche H, Veillette M, Bilodeau GJ, Duchaine C. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Applied and Environmental Microbiology 84:e01589-18

doi: 10.1128/AEM.01589-18
[47]

Cox J, Mbareche H, Lindsley WG, Duchaine C. 2020. Field sampling of indoor bioaerosols. Aerosol Science and Technology 54:572−584

doi: 10.1080/02786826.2019.1688759
[48]

Bhardwaj J, Hong S, Jang J, Han CH, Lee J, et al. 2021. Recent advancements in the measurement of pathogenic airborne viruses. Journal of Hazardous Materials 420:126574

doi: 10.1016/j.jhazmat.2021.126574
[49]

Pirhadi M, Mousavi A, Sioutas C. 2020. Evaluation of a high flow rate electrostatic precipitator (ESP) as a particulate matter (PM) collector for toxicity studies. The Science of the Total Environment 739:140060

doi: 10.1016/j.scitotenv.2020.140060
[50]

Luhung I, Uchida A, Lim SBY, Gaultier NE, Kee C, et al. 2021. Experimental parameters defining ultra-low biomass bioaerosol analysis. NPJ Biofilms and Microbiomes 7:37

doi: 10.1038/s41522-021-00209-4
[51]

Riemenschneider L, Woo MH, Wu CY, Lundgren D, Wander J, et al. 2010. Characterization of reaerosolization from impingers in an effort to improve airborne virus sampling. Journal of Applied Microbiology 108:315−324

doi: 10.1111/j.1365-2672.2009.04425.x
[52]

Hogan CJ Jr, Kettleson EM, Lee MH, Ramaswami B, Angenent LT, et al. 2005. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology 99:1422−1434

doi: 10.1111/j.1365-2672.2005.02720.x
[53]

Cho YS, Hong SC, Choi J, Jung JH. 2019. Development of an automated wet-cyclone system for rapid, continuous and enriched bioaerosol sampling and its application to real-time detection. Sensors and Actuators. B, Chemical 284:525−33

doi: 10.1016/j.snb.2018.12.155
[54]

Lowther S, Jones KC, Wang X, Whyatt JD, Wild O, et al. 2019. Particulate matter measurement indoors: a review of metrics, sensors, needs, and applications. Environmental Science & Technology 53(20):11644−56

doi: 10.1021/acs.est.9b03425
[55]

Lu L, Wu X, Ji Z, Xiong Z, Wang M. 2019. Optimization of the optical particle counter for online particle measurement in high-pressure gas. Applied Optics 58:308−16

doi: 10.1364/AO.58.000308
[56]

Sousan S, Koehler K, Hallett L, Peters TM. 2016. Evaluation of the alphasense optical particle counter (OPC-N2) and the grimm portable aerosol spectrometer (PAS-1.108). Aerosol Science and Technology 50:1352−1365

doi: 10.1080/02786826.2016.1232859
[57]

Rahmani AR, Leili M, Azarian G, Poormohammadi A. 2020. Sampling and detection of corona viruses in air: a mini review. The Science of the Total Environment 740:140207

doi: 10.1016/j.scitotenv.2020.140207