[1]

Wang X, Pei Y, Wu J, Zhong X, Liu H, et al. 2025. Innovative mycelium-based food: advancing One Health through nutritional insights and environmental sustainability. Comprehensive Reviews in Food Science and Food Safety 24:e70166

doi: 10.1111/1541-4337.70166
[2]

Kominiarek MA, Rajan P. 2016. Nutrition recommendations in pregnancy and lactation. Medical Clinics of North America 100:1199−215

doi: 10.1016/j.mcna.2016.06.004
[3]

Goodnight W, Newman R, Society of Maternal–Fetal Medicine. 2009. Optimal nutrition for improved twin pregnancy outcome. Obstetrics and Gynecology 114:1121−34

doi: 10.1097/AOG.0b013e3181bb14c8
[4]

Cal-Pereyra L, Dibarrat JA, Benech A, Da Silva S, Martin A, et al. 2012. Toxemia de la gestación en ovejas: revisión. Revista Mexicana de Ciencias Pecuarias 2:247−64

[5]

Hoang AN. 2019. Undernutrition during pregnancy. In Complications of Pregnancy. ed. Abduljabbar HS. London: IntechOpen doi: 10.5772/intechopen.82727

[6]

Rush D. 2000. Nutrition and maternal mortality in the developing world. The American Journal of Clinical Nutrition 72:212S−240S

doi: 10.1093/ajcn/72.1.212S
[7]

Saeed Q, Shah N, Inam S, Shafique K. 2017. Maternal depressive symptoms and child nutritional status: a cross-sectional study in socially disadvantaged Pakistani community. Journal of Child Health Care 21:331−42

doi: 10.1177/1367493517721063
[8]

Wu G, Bazer FW, Wallace JM, Spencer TE. 2006. Board-invited review: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science 84:2316−37

doi: 10.2527/jas.2006-156
[9]

Abu-Saad K, Fraser D. 2010. Maternal nutrition and birth outcomes. Epidemiologic Reviews 32:5−25

doi: 10.1093/epirev/mxq001
[10]

Stein AD, Zybert PA, van de Bor M, Lumey LH. 2004. Intrauterine famine exposure and body proportions at birth: the Dutch Hunger Winter. International Journal of Epidemiology 33:831−36

doi: 10.1093/ije/dyh083
[11]

Bhutta ZA, Darmstadt GL, Hasan BS, Haws RA. 2005. Community-based interventions for improving perinatal and neonatal health outcomes in developing countries: a review of the evidence. Pediatrics 115:519−617

doi: 10.1542/peds.2004-1441
[12]

Gao F, Hou X, Liu Y. 2007. Effect of hormonal status and metabolic changes of restricted ewes during late pregnancy on their fetal growth and development. Science in China Series C: Life Sciences 50:766−72

doi: 10.1007/s11427-007-0098-x
[13]

Gluckman PD, Cutfield W, Hofman P, Hanson MA. 2005. The fetal, neonatal, and infant environments-the long-term consequences for disease risk. Early Human Development 81:51−59

doi: 10.1016/j.earlhumdev.2004.10.003
[14]

Cal L, Borteiro C, Benech A, Rodas E, Abreu MN, et al. 2009. Histological changes of the liver and metabolic correlates in ewes with pregnancy toxemia. Brazilian Journal of Veterinary and Animal Sciences 61:306−12

doi: 10.1590/s0102-09352009000200004
[15]

Wang M, Li E, Wang G. 2014. Histopathological analysis of liver during pregnancy toxemia in small-tailed han sheep. Agricultural Science & Technology 3:470−73

[16]

Victora CG, Adair L, Fall C, Hallal PC, Martorell R, et al. 2008. Maternal and child undernutrition: consequences for adult health and human capital. The Lancet 371:340−57

doi: 10.1016/S0140-6736(07)61692-4
[17]

Mikolajczak A, Sallam NA, Singh RD, Scheidl TB, Walsh EJ, et al. 2021. Accelerated developmental adipogenesis programs adipose tissue dysfunction and cardiometabolic risk in offspring born to dams with metabolic dysfunction. American Journal of Physiology Endocrinology and Metabolism 321:E581−E591

doi: 10.1152/ajpendo.00229.2021
[18]

Bagchi DP, Nishii A, Li Z, DelProposto JB, Corsa CA, et al. 2020. Wnt/β-catenin signaling regulates adipose tissue lipogenesis and adipocyte-specific loss is rigorously defended by neighboring stromal-vascular cells. Molecular Metabolism 42:101078

doi: 10.1016/j.molmet.2020.101078
[19]

Xue Y, Guo C, Hu F, Zhu W, Mao S. 2019. Maternal undernutrition induces fetal hepatic lipid metabolism disorder and affects the development of fetal liver in a sheep model. FASEB Journal 33:9990−10004

doi: 10.1096/fj.201900406R
[20]

Rani V, Deep G, Singh RK, Palle K, Yadav UCS. 2016. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sciences 148:183−93

doi: 10.1016/j.lfs.2016.02.002
[21]

Xue YF, Guo CZ, Hu F, Sun DM, Liu JH, et al. 2019. Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia. Animal 13:992−999

doi: 10.1017/S1751731118002136
[22]

Wesolowski SR, El Kasmi KC, Jonscher KR, Friedman JE. 2017. Developmental origins of NAFLD: a womb with a clue. Nature Reviews Gastroenterology & Hepatology 14:81−96

doi: 10.1038/nrgastro.2016.160
[23]

Wells JC, Sawaya AL, Wibaek R, Mwangome M, Poullas MS, et al. 2020. The double burden of malnutrition: aetiological pathways and consequences for health. The Lancet 395:75−88

doi: 10.1016/S0140-6736(19)32472-9
[24]

Lumey LH, Stein AD, Kahn HS, van der Pal-de Bruin KM, Blauw GJ, et al. 2007. Cohort profile: the Dutch Hunger Winter families study. International Journal of Epidemiology 36:1196−204

doi: 10.1093/ije/dym126
[25]

Redmer DA, Wallace JM, Reynolds LP. 2004. Effect of nutrient intake during pregnancy on fetal and placental growth and vascular development. Domestic Animal Endocrinology 27:199−217

doi: 10.1016/j.domaniend.2004.06.006
[26]

Wallace JM, Luther JS, Milne JS, Aitken RP, Redmer DA, et al. 2006. Nutritional modulation of adolescent pregnancy outcome − a review. Placenta 27(Suppl A):S61−S68

doi: 10.1016/j.placenta.2005.12.002
[27]

Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D. 2016. Diet before and during pregnancy and offspring health: the importance of animal models and what can be learned from them. International Journal of Environmental Research and Public Health 13:586

doi: 10.3390/ijerph13060586
[28]

Stevens CE, Hume ID. 1998. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews 78:393−427

doi: 10.1152/physrev.1998.78.2.393
[29]

Levenson SM, Crowley LV, Horowitz RE, Malm OJ. 1959. The metabolism of carbon-labeled urea in the germfree rat. Journal of Biological Chemistry 234:2061−62

doi: 10.1016/S0021-9258(18)69867-9
[30]

von Engelhardt W, Hinderer S, Rechkemmer G, Becker G. 1984. Urea secretion into the colon of sheep and goat. Quarterly Journal of Experimental Physiology 69:469−75

doi: 10.1113/expphysiol.1984.sp002833
[31]

McMillen IC, MacLaughlin SM, Muhlhausler BS, Gentili S, Duffield JL, et al. 2008. Developmental origins of adult health and disease: the role of periconceptional and foetal nutrition. Basic & Clinical Pharmacology & Toxicology 102:82−89

doi: 10.1111/j.1742-7843.2007.00188.x
[32]

Ye J, DeBose-Boyd RA. 2011. Regulation of cholesterol and fatty acid synthesis. Cold Spring Harbor Perspectives in Biology 3:a004754

doi: 10.1101/cshperspect.a004754
[33]

Postic C, Dentin R, Denechaud PD, Girard J. 2007. ChREBP, a transcriptional regulator of glucose and lipid metabolism. Annual Review of Nutrition 27:179−92

doi: 10.1146/annurev.nutr.27.061406.093618
[34]

Brickner AE, Pires JAA, Gressley TF, Grummer RR. 2009. Effects of abomasal lipid infusion on liver triglyceride accumulation and adipose lipolysis during fatty liver induction in dairy cows. Journal of Dairy Science 92:4954−61

doi: 10.3168/jds.2009-2147
[35]

Syed-Abdul MM, Moore MP, Wheeler AA, Ganga RR, Diaz-Arias A, et al. 2023. Isotope labeling and biochemical assessment of liver-triacylglycerol in patients with different levels of histologically-graded liver disease. The Journal of Nutrition 153:3418−29

doi: 10.1016/j.tjnut.2023.09.018
[36]

Bansal SK, Bansal MB. 2024. Pathogenesis of MASLD and MASH − role of insulin resistance and lipotoxicity. Alimentary Pharmacology & Therapeutics 59(Suppl 1):S10−S22

doi: 10.1111/apt.17930
[37]

Kawano Y, Cohen DE. 2013. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. Journal of Gastroenterology 48:434−41

doi: 10.1007/s00535-013-0758-5
[38]

Simard JR, Kamp F, Hamilton JA. 2008. Measuring the adsorption of fatty acids to phospholipid vesicles by multiple fluorescence probes. Biophysical Journal 94:4493−503

doi: 10.1529/biophysj.107.121186
[39]

Thompson BR, Lobo S, Bernlohr DA. 2010. Fatty acid flux in adipocytes: the in's and out's of fat cell lipid trafficking. Molecular and Cellular Endocrinology 318:24−33

doi: 10.1016/j.mce.2009.08.015
[40]

Lavoie JM, Gauthier MS. 2006. Regulation of fat metabolism in the liver: link to non-alcoholic hepatic steatosis and impact of physical exercise. Cellular and Molecular Life Sciences 63:1393−409

doi: 10.1007/s00018-006-6600-y
[41]

Zakaria Z, Othman ZA, Nna VU, Mohamed M. 2023. The promising roles of medicinal plants and bioactive compounds on hepatic lipid metabolism in the treatment of non-alcoholic fatty liver disease in animal models: molecular targets. Archives of Physiology and Biochemistry 129:1262−78

doi: 10.1080/13813455.2021.1939387
[42]

Shiozaki M, Kanno K, Yonezawa S, Otani Y, Shigenobu Y, et al. 2024. Integrator complex subunit 6 promotes hepatocellular steatosis via β-catenin-PPARγ axis. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1869:159532

doi: 10.1016/j.bbalip.2024.159532
[43]

Wernig F, Born S, Boles E, Grininger M, Oreb M. 2020. Fusing α and β subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Scientific Reports 10:9780

doi: 10.1038/s41598-020-66629-y
[44]

Tan H, Mi N, Tong F, Zhang R, Abudurexiti A, et al. 2024. Lactucopicrin promotes fatty acid β-oxidation and attenuates lipid accumulation through adenosine monophosphate-activated protein kinase activation in free fatty acid-induced human hepatoblastoma cancer cells. Food Science & Nutrition 12:5357−72

doi: 10.1002/fsn3.4176
[45]

Wei H, Weaver YM, Yang C, Zhang Y, Hu G, et al. 2024. Proteolytic activation of fatty acid synthase signals pan-stress resolution. Nature Metabolism 6:113−26

doi: 10.1038/s42255-023-00939-z
[46]

Adewuyi AA, Gruys E, van Eerdenburg FM. 2005. Non esterified fatty acids (NEFA) in dairy cattle. A review. The Veterinary Quarterly 27:117−26

doi: 10.1080/01652176.2005.9695192
[47]

Zhang G, Deighan A, Raj A, Robinson L, Donato HJ, et al. 2022. Intermittent fasting and caloric restriction interact with genetics to shape physiological health in mice. Genetics 220:iyab157

doi: 10.1093/genetics/iyab157
[48]

Loor JJ, Everts RE, Bionaz M, Dann HM, Morin DE, et al. 2007. Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows. Physiological Genomics 32:105−16

doi: 10.1152/physiolgenomics.00188.2007
[49]

Lkhagvadorj S, Qu L, Cai W, Couture OP, Barb CR, et al. 2010. Gene expression profiling of the short-term adaptive response to acute caloric restriction in liver and adipose tissues of pigs differing in feed efficiency. American Journal of Physiology Regulatory, Integrative and Comparative Physiology 298:R494−R507

doi: 10.1152/ajpregu.00632.2009
[50]

Bertolesi GE, Chilije MFJ, Li V, Thompson CC, López-Villalobos A, et al. 2023. Differential eye expression of xenopus acyltransferase gnpat and its biochemical characterization shed light on lipid-associated ocular pathologies. Investigative Ophthalmology & Visual Science 64:17

doi: 10.1167/iovs.64.5.17
[51]

Kamemoto Y, Hikage R, Han Y, Sekiya Y, Sawasato K, et al. 2023. Coordinated upregulation of two CDP-diacylglycerol synthases, YnbB and CdsA, is essential for cell growth and membrane protein export in the cold. FEMS Microbiology Letters 370:fnad131

doi: 10.1093/femsle/fnad131
[52]

Kohjima M, Enjoji M, Higuchi N, Kato M, Kotoh K, et al. 2007. Re-evaluation of fatty acid metabolism-related gene expression in nonalcoholic fatty liver disease. International Journal of Molecular Medicine 20:351−58

[53]

Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, et al. 2000. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nature Genetics 25:87−90

doi: 10.1038/75651
[54]

Zhang S, Williams KJ, Verlande-Ferrero A, Chan AP, Su GB, et al. 2024. Acute activation of adipocyte lipolysis reveals dynamic lipid remodeling of the hepatic lipidome. Journal of Lipid Research 65:100434

doi: 10.1016/j.jlr.2023.100434
[55]

Hikage R, Sekiya Y, Sawasato K, Nishiyama KI. 2024. CdsA, a CDP-diacylglycerol synthase involved in phospholipid and glycolipid MPIase biosynthesis, possesses multiple initiation codons. Genes to Cells 29:347−55

doi: 10.1111/gtc.13104
[56]

Santoshi M, Bansia H, Hussain M, Jha AK, Nagaraja V. 2024. Identification of a 1-acyl-glycerol-3-phosphate acyltransferase from Mycobacterium tuberculosis, a key enzyme involved in triacylglycerol biosynthesis. Molecular Microbiology 121:1164−81

doi: 10.1111/mmi.15265
[57]

Ghaderi S, Levkau B. 2023. An erythrocyte-centric view on the MFSD2B sphingosine-1-phosphate transporter. Pharmacology & Therapeutics 249:108483

doi: 10.1016/j.pharmthera.2023.108483
[58]

Blades F, Yazici AT, Cater RJ, Mancia F. 2025. MFSD2A in focus: the molecular mechanism of omega-3 fatty acid transport. Physiology 40:470−83

doi: 10.1152/physiol.00068.2024
[59]

Desvergne B, Michalik L, Wahli W. 2006. Transcriptional regulation of metabolism. Physiological Reviews 86:465−514

doi: 10.1152/physrev.00025.2005
[60]

Langley-Evans SC. 2006. Developmental programming of health and disease. Proceedings of the Nutrition Society 65:97−105

doi: 10.1079/PNS2005478
[61]

Salter AM, Tarling EJ, Langley-Evans SC. 2009. Influence of maternal nutrition on the metabolic syndrome and cardiovascular risk in the offspring. Clinical Lipidology 2:145−58

doi: 10.2217/clp.09.4
[62]

Krebs N, Bagby S, Bhutta ZA, Dewey K, Fall C, et al. 2017. International summit on the nutrition of adolescent girls and young women: consensus statement. Annals of the New York Academy of Sciences 1400:3−7

doi: 10.1111/nyas.13417
[63]

Gao F, Liu Y, Li L, Li M, Zhang C, et al. 2014. Effects of maternal undernutrition during late pregnancy on the development and function of ovine fetal liver. Animal Reproduction Science 147:99−105

doi: 10.1016/j.anireprosci.2014.04.012
[64]

Liu X, Wang J, Gao L, Jiao Y, Liu C. 2018. Maternal protein restriction induces alterations in hepatic unfolded protein response-related molecules in adult rat offspring. Frontiers in Endocrinology 9:676

doi: 10.3389/fendo.2018.00676
[65]

Parimi PS, Cripe-Mamie C, Kalhan SC. 2004. Metabolic responses to protein restriction during pregnancy in rat and translation initiation factors in the mother and fetus. Pediatric Research 56:423−31

doi: 10.1203/01.PDR.0000136277.10365.84
[66]

Martínez-Botas J, Suárez Y, Ferruelo AJ, Gómez-Coronado D, Lasuncion MA. 1999. Cholesterol starvation decreases p34(cdc2) kinase activity and arrests the cell cycle at G2. FASEB Journal 13:1359−70

doi: 10.1096/fasebj.13.11.1359
[67]

Suárez Y, Fernández C, Ledo B, Ferruelo AJ, Martín M, et al. 2002. Differential effects of ergosterol and cholesterol on Cdk1 activation and SRE-driven transcription. European Journal of Biochemistry 269:1761−71

doi: 10.1046/j.1432-1327.2002.02822.x
[68]

Herrera E, Amusquivar E, López-Soldado I, Ortega H. 2006. Maternal lipid metabolism and placental lipid transfer. Hormone Research 65:59−64

doi: 10.1159/000091507
[69]

Vance DE, Vance JE. 1996. Biochemistry of Lipids, Lipoproteins and Membranes. 3rd Edition. Amsterdam: Elsevier. www.sciencedirect.com/bookseries/new-comprehensive-biochemistry/vol/31/suppl/C

[70]

Wellner N, Diep TA, Janfelt C, Hansen HS. 2013. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochimica et Biophysica Acta (BBA) − Molecular and Cell Biology of Lipids 1831:652−62

doi: 10.1016/j.bbalip.2012.08.019
[71]

Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF. 1998. Pharmacological inhibitors of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Research 58:4611−15

[72]

Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, et al. 2006. Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Research 66:5934−40

doi: 10.1158/0008-5472.CAN-05-3197
[73]

Nelson ME, Lahiri S, Chow JDY, Byrne FL, Hargett SR, et al. 2017. Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nature Communications 8:14689

doi: 10.1038/ncomms14689
[74]

Artwohl M, Roden M, Waldhäusl W, Freudenthaler A, Baumgartner-Parzer SM. 2004. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB Journal 18:146−48

doi: 10.1096/fj.03-0301fje
[75]

Liu Y, Ma C, Li H, Li L, Gao F, et al. 2017. Effects of intrauterine growth restriction during late pregnancy on the cell apoptosis and related gene expression in ovine fetal liver. Theriogenology 90:204−9

doi: 10.1016/j.theriogenology.2016.11.030
[76]

Zi Y, Ma C, He S, Yang H, Zhang M, et al. 2022. Effects of intrauterine growth restriction during late pregnancy on the cell growth, proliferation, and differentiation in ovine fetal thymuses. Animal Bioscience 35:989−98

doi: 10.5713/ab.21.0414
[77]

Hancock ML, Meyer RC, Mistry M, Khetani RS, Wagschal A, et al. 2019. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177:722−736.e22

doi: 10.1016/j.cell.2019.02.030
[78]

Montaigne D, Butruille L, Staels B. 2021. PPAR control of metabolism and cardiovascular functions. Nature Reviews Cardiology 18:809−23

doi: 10.1038/s41569-021-00569-6
[79]

Zhang Z, Liang X, Tong L, Lv Y, Yi H, et al. 2021. Effect of Inonotus obliquus (Fr.) Pilat extract on the regulation of glycolipid metabolism via PI3K/Akt and AMPK/ACC pathways in mice. Journal of Ethnopharmacology 273:113963

doi: 10.1016/j.jep.2021.113963
[80]

Li X, Yeh V, Molteni V. 2010. Liver X receptor modulators: a review of recently patented compounds (2007−2009). Expert Opinion on Therapeutic Patents 20:535−62

doi: 10.1517/13543771003621269
[81]

Xue Y, Guo C, Hu F, Zhu W, Mao S. 2020. Undernutrition-induced lipid metabolism disorder triggers oxidative stress in maternal and fetal livers using a model of pregnant sheep. FASEB Journal 34:6508−20

doi: 10.1096/fj.201902537R
[82]

Kersten S, Stienstra R. 2017. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver. Biochimie 136:75−84

doi: 10.1016/j.biochi.2016.12.019
[83]

Pyper SR, Viswakarma N, Yu S, Reddy JK. 2010. PPARalpha: energy combustion, hypolipidemia, inflammation and cancer. Nuclear Receptor Signaling 8:e002

doi: 10.1621/nrs.08002
[84]

la Cour Poulsen L, Siersbæk M, Mandrup S. 2012. PPARs: fatty acid sensors controlling metabolism. Seminars in Cell & Developmental Biology 23:631−39

doi: 10.1016/j.semcdb.2012.01.003
[85]

Hertz R, Bar-Tana J. 1992. Induction of peroxisomal beta-oxidation genes by retinoic acid in cultured rat hepatocytes. Biochemical Journal 281:41−43

doi: 10.1042/bj2810041
[86]

Issemann I, Prince RA, Tugwood JD, Green S. 1993. The retinoid X receptor enhances the function of the peroxisome proliferator activated receptor. Biochimie 75:251−56

doi: 10.1016/0300-9084(93)90084-6
[87]

Reddy JK, Hashimoto T. 2001. Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annual Review of Nutrition 21:193−230

doi: 10.1146/annurev.nutr.21.1.193
[88]

Kuhla B, Görs S, Metges CC. 2011. Hypothalamic orexin A expression and the involvement of AMPK and PPAR-gamma signalling in energy restricted dairy cows. Archives Animal Breeding 54:567−79

doi: 10.5194/aab-54-567-2011
[89]

Li P, Liu M, Long M, Guo Y, Wang Z, et al. 2013. Effect of β-hydroxybutyrate on expression of 3-hydroxy-3-methylglutaryl-CoA synthase in bovine hepatocytes cultured in vitro. Feed Industry 34(21):54−56

[90]

Ness GC, Chambers CM. 2000. Feedback and hormonal regulation of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase: the concept of cholesterol buffering capacity. Proceedings of the Society for Experimental Biology and Medicine 224:8−19

doi: 10.1111/j.1525-1373.2000.22359.x
[91]

Forbes JM, Coughlan MT, Cooper ME. 2008. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57:1446−54

doi: 10.2337/db08-0057
[92]

Davis JE, Gabler NK, Walker-Daniels J, Spurlock ME. 2009. The c-Jun N-terminal kinase mediates the induction of oxidative stress and insulin resistance by palmitate and toll-like receptor 2 and 4 ligands in 3T3-L1 adipocytes. Hormone and Metabolic Research 41:523−30

doi: 10.1055/s-0029-1202852
[93]

Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, et al. 2006. Oxidative stress and dysregulation of NAD(P)H oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55:928−34

doi: 10.1016/j.metabol.2006.02.022
[94]

Zhang Y, Cui Y, Wang XL, Shang X, Qi ZG, et al. 2015. PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine 75:127−35

doi: 10.1016/j.cyto.2015.05.031
[95]

Kurahashi T, Hamashima S, Shirato T, Lee J, Homma T, et al. 2015. An SOD1 deficiency enhances lipid droplet accumulation in the fasted mouse liver by aborting lipophagy. Biochemical and Biophysical Research Communications 467:866−71

doi: 10.1016/j.bbrc.2015.10.052
[96]

Fernández-Miranda C, Pérez-Carreras M, Colina F, López-Alonso G, Vargas C, et al. 2008. A pilot trial of fenofibrate for the treatment of non-alcoholic fatty liver disease. Digestive and Liver Disease 40:200−5

doi: 10.1016/j.dld.2007.10.002
[97]

Kumar DP, Caffrey R, Marioneaux J, Santhekadur PK, Bhat M, et al. 2020. The PPAR α/γ Agonist saroglitazar improves insulin resistance and steatohepatitis in a diet induced animal model of nonalcoholic fatty liver disease. Scientific Reports 10:9330

doi: 10.1038/s41598-020-66458-z
[98]

Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, et al. 2016. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 150:1147−1159.e5

doi: 10.1053/j.gastro.2016.01.038