[1]

Evans EA, Ballen FH, Siddiq M. 2020. Banana production, global trade, consumption trends, postharvest handling, and processing. In Handbook of banana production, postharvest science, processing technology, and nutrition, eds. Siddiq M, Ahmed J, Lobo MG. Hoboken: Wiley. pp. 1–18 doi: 10.1002/9781119528265.ch1

[2]

Vuppalapati C. 2023. Specialty crops: banana. In Specialty crops for climate change adaptation. Switzerland: Springer, Cham. pp. 261–418 doi: 10.1007/978-3-031-38399-1_4

[3]

Munhoz T, Vargas J, Teixeira L, Staver C, Dita M. 2024. Fusarium tropical race 4 in Latin America and the Caribbean: status and global research advances towards disease management. Frontiers in Plant Science 15:1397617

doi: 10.3389/fpls.2024.1397617
[4]

Dita M, Barquero M, Heck D, Mizubuti ESG, Staver CP. 2018. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Frontiers in Plant Science 9:1468

doi: 10.3389/fpls.2018.01468
[5]

Viljoen A, Mostert D, Chiconela T, Beukes I, Fraser C, et al. 2020. Occurrence and spread of the banana fungus Fusarium oxysporum f. sp. cubense TR4 in Mozambique. South African Journal of Science 116:8608

doi: 10.17159/sajs.2020/8608
[6]

Damodaran T, Rajan S, Muthukumar M, Gopal R, Yadav K, et al. 2020. Biological management of banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 using antagonistic fungal isolate CSR-T-3 (Trichoderma Reesei). Frontiers in Microbiology 11:595845

doi: 10.3389/fmicb.2020.595845
[7]

Birt HWG, Pattison AB, Skarshewski A, Daniells J, Raghavendra A, et al. 2022. The core bacterial microbiome of banana (Musa spp.). Environmental Microbiome 17:46

doi: 10.1186/s40793-022-00442-0
[8]

Dale J, James A, Paul JY, Khanna H, Smith M, et al. 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Communications 8:1496

doi: 10.1038/s41467-017-01670-6
[9]

Bubici G, Kaushal M, Prigigallo MI, Gómez-Lama Cabanás C, Mercado-Blanco J. 2019. Biological control agents against Fusarium wilt of banana. Frontiers in Microbiology 10:616

doi: 10.3389/fmicb.2019.00616
[10]

Ong JX, Suhaimi NSM, Saidi NB. 2024. The microbiome of banana and its role in managing Fusarium wilt disease. In Advances in tropical crop protection, ed. Wong MY. Switzerland: Springer, Cham. pp. 105–20 doi: 10.1007/978-3-031-59268-3_8

[11]

Kaushal M, Swennen R, Mahuku G. 2020. Unlocking the microbiome communities of banana (Musa spp.) under disease stressed (Fusarium wilt) and non-stressed conditions. Microorganisms 8:443

doi: 10.3390/microorganisms8030443
[12]

Mohite DP, Kavino M, Nakkeeran S, Raveendran M, Raghu R, et al. 2024. Biohardening with endomicrobiome – a novel approach to develop Fusarium wilt resistance in banana (Musa spp.). The Microbe 4:100109

doi: 10.1016/j.microb.2024.100109
[13]

Rossmann B, Müller H, Smalla K, Mpiira S, Tumuhairwe JB, et al. 2012. Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae. Applied and Environmental Microbiology 78:4933−41

doi: 10.1128/AEM.00772-12
[14]

Kaushal M, Tumuhairwe JB, Kaingo J, Richard M, Nakamanya F, et al. 2022. Compositional shifts in microbial diversity under traditional banana cropping systems of sub-Saharan Africa. Biology 11:756

doi: 10.3390/biology11050756
[15]

Balakrishnan Nair PK, Wilson KI. 1975. Phyllosphere Microflora of Banana Plants in Relation to Bunchy Top Virus Infection. Sydowia 28:162−65

[16]

Cao T, Luo Y, Shi M, Tian X, Kuzyakov Y. 2024. Microbial interactions for nutrient acquisition in soil: miners, scavengers, and carriers. Soil Biology and Biochemistry 188:109215

doi: 10.1016/j.soilbio.2023.109215
[17]

Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, et al. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Frontiers in Plant Science 9:1473

doi: 10.3389/fpls.2018.01473
[18]

Igiehon BC, Babalola OO, Hassen AI. 2024. Rhizosphere competence and applications of plant growth-promoting rhizobacteria in food production – a review. Scientific African 23:e02081

doi: 10.1016/j.sciaf.2024.e02081
[19]

Kejela T. 2024. Phytohormone-producing rhizobacteria and their role in plant growth. In New insights into phytohormones, eds. Ali B, Iqbal J. London: IntechOpen. pp. 1−23. doi: 10.5772/intechopen.1002823

[20]

Solórzano R, Ramírez Maguiña HA, Johnson L, Ureta Sierra C, Cruz J. 2025. Current progress in microbial biocontrol of banana Fusarium wilt: a systematic review. Agronomy 15:619

doi: 10.3390/agronomy15030619
[21]

Ahmad Asad S. 2022. Mechanisms of action and biocontrol potential of Trichoderma against fungal plant diseases − a review. Ecological Complexity 49:100978

doi: 10.1016/j.ecocom.2021.100978
[22]

Chen Q, Song Y, An Y, Lu Y, Zhong G. 2024. Soil microorganisms: their role in enhancing crop nutrition and health. Diversity 16:734

doi: 10.3390/d16120734
[23]

Liao J, Liang Y, Huang D. 2018. Organic farming improves soil microbial abundance and diversity under greenhouse condition: a case study in Shanghai (eastern China). Sustainability 10:3825

doi: 10.3390/su10103825
[24]

Compant S, Clément C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry 42:669−78

doi: 10.1016/j.soilbio.2009.11.024
[25]

Berendsen RL, Pieterse CMJ, Bakker PAHM. 2012. The rhizosphere microbiome and plant health. Trends in Plant Science 17:478−86

doi: 10.1016/j.tplants.2012.04.001
[26]

Xie J, Singh P, Qi Y, Singh RK, Qin Q, et al. 2023. Pseudomonas aeruginosa strain 91: a multifaceted biocontrol agent against banana Fusarium wilt. Journal of Fungi 9:1047

doi: 10.3390/jof9111047
[27]

Pellegrini M, Ercole C, Di Zio C, Matteucci F, Pace L, et al. 2020. In vitro and in planta antagonistic effects of plant growth-promoting rhizobacteria consortium against soilborne plant pathogens of Solanum tuberosum and Solanum lycopersicum. FEMS Microbiology Letters 367:fnaa099

doi: 10.1093/femsle/fnaa099
[28]

Lin Z, Wang K, Feng J. 2025. Identification and analysis of VOCs released by Rhodococcus ruber GXMZU2400 to promote plant growth and inhibit pathogen growth. BMC Plant Biology 25:559

doi: 10.1186/s12870-025-06582-y
[29]

Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, et al. 2014. Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology 52:347−75

doi: 10.1146/annurev-phyto-082712-102340
[30]

Nakkeeran S, Rajamanickam S, Saravanan R, Vanthana M, Soorianathasundaram K. 2021. Bacterial endophytome-mediated resistance in banana for the management of Fusarium wilt. 3 Biotech 11:267

doi: 10.1007/s13205-021-02833-5
[31]

Hönig M, Roeber VM, Schmülling T, Cortleven A. 2023. Chemical priming of plant defense responses to pathogen attacks. Frontiers in Plant Science 14:1146577

doi: 10.3389/fpls.2023.1146577
[32]

Santoyo G. 2022. How plants recruit their microbiome? New insights into beneficial interactions. Journal of Advanced Research 40:45−58

doi: 10.1016/j.jare.2021.11.020
[33]

Yang L, Zhou Y, Guo L, Yang L, Wang J, et al. 2023. The effect of banana rhizosphere chemotaxis and chemoattractants on Bacillus velezensis LG14-3 root colonization and suppression of banana Fusarium wilt disease. Sustainability 15:351

doi: 10.3390/su15010351
[34]

Niu B, Paulson JN, Zheng X, Kolter R. 2017. Simplified and representative bacterial community of maize roots. Proceedings of the National Academy of Sciences 114:E2450−E2459

doi: 10.1073/pnas.1616148114
[35]

Shen Z, Thomashow LS, Ou Y, Tao C, Wang J, et al. 2022. Shared core microbiome and functionality of key taxa suppressive to banana Fusarium wilt. Research 2022:9818073

doi: 10.34133/2022/9818073
[36]

Pushpavathi Y, Dash SN, Reddy YA, Triveni V. 2017. Evaluation of Fungicides and Biocontrol Agents for Potential Application in Fusarium Wilt Management of Banana Cv Bantal. International Journal of Farm Sciences 7:115−18

[37]

Hong S, Jv H, Lu M, Wang B, Zhao Y, et al. 2020. Significant decline in banana Fusarium wilt disease is associated with soil microbiome reconstruction under chilli pepper-banana rotation. European Journal of Soil Biology 97:103154

doi: 10.1016/j.ejsobi.2020.103154
[38]

Fu L, Penton CR, Ruan Y, Shen Z, Xue C, et al. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry 104:39−48

doi: 10.1016/j.soilbio.2016.10.008
[39]

Zhu Z, Wu G, Deng R, Hu X, Tan H, et al. 2023. Spatiotemporal biocontrol and rhizosphere microbiome analysis of Fusarium wilt of banana. Communications Biology 6:27

doi: 10.1038/s42003-023-04417-w
[40]

Yang J, Duan Y, Liu X, Sun M, Wang Y, et al. 2022. Reduction of banana Fusarium wilt associated with soil microbiome reconstruction through green manure intercropping. Agriculture, Ecosystems & Environment 337:108065

doi: 10.1016/j.agee.2022.108065
[41]

Hong S, Yuan X, Yang J, Yang Y, Jv H, et al. 2023. Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana Fusarium wilt disease. New Phytologist 238:2194−209

doi: 10.1111/nph.18816
[42]

Wang B, Sun M, Yang J, Shen Z, Ou Y, et al. 2022. Inducing banana Fusarium wilt disease suppression through soil microbiome reshaping by pineapple-banana rotation combined with biofertilizer application. Soil 8:17−29

doi: 10.5194/soil-8-17-2022
[43]

Hadimani A, Raman T, Esack E, Loganathan M, Jaganathan D, et al. 2025. Deciphering the microbiome dynamics in an effective banana Fusarium wilt biocontrol interaction system. 3 Biotech 15:59

doi: 10.1007/s13205-025-04223-7
[44]

Yuan X, Hong S, Xiong W, Raza W, Shen Z, et al. 2021. Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. Microbiome 9:200

doi: 10.1186/s40168-021-01133-7
[45]

Lv N, Tao C, Ou Y, Wang J, Deng X, et al. 2023. Root-associated antagonistic Pseudomonas spp. contribute to soil suppressiveness against banana Fusarium wilt disease of banana. Microbiology Spectrum 11:e03525−22

doi: 10.1128/spectrum.03525-22
[46]

Thangavelu R, Gopi M. 2015. Field suppression of Fusarium wilt disease in banana by the combined application of native endophytic and rhizospheric bacterial isolates possessing multiple functions. Phytopathologia Mediterranea 54:241−52

doi: 10.14601/Phytopathol_Mediterr-15160
[47]

Fan H, He P, Xu S, Li S, Wang Y, et al. 2023. Banana disease-suppressive soil drives Bacillus assembled to defense Fusarium wilt of banana. Frontiers in Microbiology 14:1211301

doi: 10.3389/fmicb.2023.1211301
[48]

Raguchander T, Shanmugam V, Samiyappan R. 2000. Biological Control of Panama Wilt Disease of Banana. Madras Agricultural Journal 87:320−21

[49]

Rajappan K, Vidhyasekaran P, Sethuraman K, Baskaran TL. 2002. Development of Powder and Capsule Formulations of Pseudomonas Fluorescens Strain Pf-1 for Control of Banana Wilt. Journal of Plant Diseases and Protection 109:80−87

[50]

Selvaraj S, Ganeshamoorthi P, Anand T, Raguchander T, Seenivasan N, et al. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl 59:345−55

doi: 10.1007/s10526-014-9569-8
[51]

Deltour P, França SC, Heyman L, Pereira OL, Höfte M. 2018. Comparative analysis of pathogenic and nonpathogenic Fusarium oxysporum populations associated with banana on a farm in Minas Gerais, Brazil. Plant Pathology 67:707−18

doi: 10.1111/ppa.12757
[52]

Ho YN, Chiang HM, Chao CP, Su CC, Hsu HF, et al. 2015. In planta biocontrol of soilborne Fusarium wilt of banana through a plant endophytic bacterium, Burkholderia cenocepacia 869T2. Plant and Soil 387:295−306

doi: 10.1007/s11104-014-2297-0
[53]

Tan D, Fu L, Han B, Sun X, Zheng P, et al. 2015. Identification of an endophytic antifungal bacterial strain isolated from the rubber tree and its application in the biological control of banana Fusarium wilt. PLoS One 10:e0131974

doi: 10.1371/journal.pone.0131974
[54]

Liu Y, Zhu A, Tan H, Cao L, Zhang R. 2019. Engineering banana endosphere microbiome to improve Fusarium wilt resistance in banana. Microbiome 7:74

doi: 10.1186/s40168-019-0690-x
[55]

Ayyadurai N, Naik PR, Rao MS, Kumar RS, Samrat SK, et al. 2006. Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. Journal of Applied Microbiology 100:926−37

doi: 10.1111/j.1365-2672.2006.02863.x
[56]

Kavino M, Manoranjitham SK, Balamohan TN, Kumar N, Karthiba L, et al. 2014. Enhancement of growth and Panama wilt resistance in banana by in vitro co-culturing of banana plantlets with PGPR and endophytes. Acta Horticulturae 1024:277−82

doi: 10.17660/ActaHortic.2014.1024.37
[57]

Wang B, Shen Z, Zhang F, Raza W, Yuan J, et al. 2016. Bacillus amyloliquefaciens strain W19 can promote growth and yield and suppress Fusarium wilt in banana under greenhouse and field conditions. Pedosphere 26:733−44

doi: 10.1016/S1002-0160(15)60083-2
[58]

Cao L, Qiu Z, You J, Tan H, Zhou S. 2005. Isolation and characterization of endophytic streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiology Letters 247:147−52

doi: 10.1016/j.femsle.2005.05.006
[59]

Yun T, Jing T, Zhou D, Zhang M, Zhao Y, et al. 2022. Potential biological control of endophytic Streptomyces sp. 5-4 against Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4. Phytopathology 112:1877−85

doi: 10.1094/PHYTO-11-21-0464-R
[60]

Thangavelu R, Gopi M. 2015. Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. Grand Naine. Biocontrol Science and Technology 25:1147−64

doi: 10.1080/09583157.2015.1036727
[61]

Hernández AJC, Pocasangre Enamorado LE, Casanoves F, Avelino J, Tapia Fernández AC, et al. 2014. Use of endophytic insulation of Trichoderma spp. , for biocontrol of Panama disease (Fusarium oxysporum f. sp. cubense) race 1, in vitro plants of banana, Gros Michel variety (AAA) under Greenhouse. La Calera 13:16−23

doi: 10.5377/calera.v13i20.1620
[62]

Forsyth LM, Smith LJ, Aitken EAB. 2006. Identification and characterization of non-pathogenic Fusarium oxysporum capable of increasing and decreasing Fusarium wilt severity. Mycological Research 110:929−35

doi: 10.1016/j.mycres.2006.03.008
[63]

Ting ASY, Mah SW, Tee CS. 2012. Evaluating the feasibility of induced host resistance by endophytic isolate Penicillium citrinum BTF08 as a control mechanism for Fusarium wilt in banana plantlets. Biological Control 61:155−59

doi: 10.1016/j.biocontrol.2012.01.010
[64]

Mohandas S, Manjula R, Rawal RD, Lakshmikantha HC, Chakraborty S, et al. 2010. Evaluation of arbuscular mycorrhiza and other biocontrol agents in managing Fusarium oxysporum f. sp. Cubense infection in banana cv. Neypoovan. Biocontrol Science and Technology 20:165−81

doi: 10.1080/09583150903438439
[65]

Borges AJS, Trindade AV, Matos AP, Peixoto MFS. 2007. Reduction of Fusarium wilt of "banana-maçã" by inoculation of arbuscular mycorrhizal fungi. Pesquisa Agropecuária Brasileira 42:35−41

doi: 10.1590/S0100-204X2007000100005
[66]

Zhang H, Song Y, Lu S, Guo J, Zeng R. 2015. The antifungal activity and crop growth stimulation of growth-promoting rhizobacteria from banana rhizosphere soil. Journal of South China Agricultural University 36:65−70 (in Chinese)

doi: 10.7671/j.issn.1001-411X.2015.03.012
[67]

Raman T, Gopalakrishnan V, Perumal GD. 2016. Identification of differently expressed genes from Fusarium oxysporum f. sp cubense and Trichoderma asperellum (prr2) interaction in the susceptible banana cultivar Grand Naine. Turkish Journal of Botany 40:480−87

doi: 10.3906/bot-1511-19
[68]

Chand G, Kumar A, Kumar S, Gupta RN, Jaiswal US, et al. 2016. Induction of resistance against Fusarium wilt of banana by application of live RKN, live and dead pathogenic strain of Fusarium oxysporum f. sp. Cubense. Journal of Pure and Applied Microbiology 10:2307−14

doi: 10.22207/JPAM.10.3.72
[69]

Kumari A, Kumar R, Kumar H. 2014. Efficacy of fungicides and Trichoderma viride against Fusarium oxysporum f. sp. cubense in-vitro. The Bioscan 9:1355−58

[70]

Getha K, Vikineswary S. 2002. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f. sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process. Journal of Industrial Microbiology & Biotechnology 28:303−10

doi: 10.1038/sj/jim/7000247
[71]

Wei SJ, Zhang ZP, Tu XR, He J, Tu GQ. 2011. Studies on the isolation, identification and activity of anti-Fusarium oxysporum secondary metabolites produced by Streptomyces sp. 702. Acta Agriculturae Universitatis Jiangxiensis 33:982−86 (in Chinese)

doi: 10.13836/j.jjau.2011176
[72]

Tan Z, Lin B, Zhang R. 2013. A novel antifungal protein of Bacillus subtilis B25. SpringerPlus 2:543

doi: 10.1186/2193-1801-2-543
[73]

Mohammed AM, Al-Ani LKT, Bekbayeva L, Salleh B. 2011. Biological control of Fusarium oxysporum f. sp. Cubense by pseudomonas fluorescens and BABA in vitro. World Applied Sciences Journal 15:189−91

[74]

Ting ASY, Mah SW, Tee CS. 2010. Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum f. sp. cubense race 4. American Journal of Agricultural and Biological Sciences 5:177−82

doi: 10.3844/ajabssp.2010.177.182
[75]

Sun TY, Hsieh FC. 2015. First record of Eutypella sp. as a mycoparasite on Fusarium oxysporum f. sp. cubense. Plant Protection Bulletin Taiwan 57:25−30

[76]

Marín M, Wong I, García G, Morán R, Basulto R, et al. 2013. In vitro antagonistic activity of Tsukamurella paurometabola C-924 against phytopathogens. Revista de Protección Vegetal 28:132−37

[77]

Fan H, Yang P, Guo Z, Zeng L. 2011. Screening of antifungal activity of secondary metabolites of fungi isolated from waste tin mine against Fusarium oxysporum f. sp. cubense. Southwest China Journal of Agricultural Sciences 24:604−7 (in Chinese)

doi: 10.3969/j.issn.1001-4829.2011.02.045
[78]

Troya CM, Mendes LW, Costa MM, Rigobelo EC, Pfenning LH, et al. 2024. Genetic resistance to Fusarium wilt shapes rhizospheric beneficial microbiota in four banana cultivars. Rhizosphere 32:100988

doi: 10.1016/j.rhisph.2024.100988
[79]

Luo S, Wang Z, Xu W. 2023. Bacillus velezensis WB invokes soil suppression of Fusarium oxysporum f. sp. niveum by inducing particular taxa. Annals of Agricultural Sciences 68:159−70

doi: 10.1016/j.aoas.2023.12.005
[80]

Elinisa CA, Mduma N. 2024. Mobile-Based convolutional neural network model for the early identification of banana diseases. Smart Agricultural Technology 7:100423

doi: 10.1016/j.atech.2024.100423
[81]

Tyagi A, Lama Tamang T, Kashtoh H, Ahmad Mir R, Ahmad Mir Z, et al. 2024. A review on biocontrol agents as sustainable approach for crop disease management: applications, production, and future perspectives. Horticulturae 10:805

doi: 10.3390/horticulturae10080805
[82]

Zhang W, Bai T, Jamil A, Fan H, Li X, et al. 2024. The interaction between Fusarium oxysporum f. sp. cubense tropical race 4 and soil properties in banana plantations in Southwest China. Plant and Soil 505:779−93

doi: 10.1007/s11104-024-06709-4
[83]

Ndayihanzamaso P, Bothma S, Mostert D, Mahuku G, Viljoen A. 2022. An optimised greenhouse protocol for screening banana plants for Fusarium wilt resistance. In Efficient Screening Techniques to Identify Mutants with TR4 Resistance in Banana, eds. Jankowicz-Cieslak J, Ingelbrecht I. Heidelberg, Berlin: Springer. pp. 65–77 doi: 10.1007/978-3-662-64915-2_5

[84]

Zhang J, Li T, Zou G, Wei Y, Qu L. 2024. Advancements and future directions in yellow rice wine production research. Fermentation 10:40

doi: 10.3390/fermentation10010040
[85]

Fan X, Ge AH, Wang E. 2024. Spatially distributed metabolites SWEETen the root for microbes. Cell Host & Microbe 32:445−47

doi: 10.1016/j.chom.2024.03.006
[86]

Ahkami AH, Qafoku O, Roose T, Mou Q, Lu Y, et al. 2024. Emerging sensing, imaging, and computational technologies to scale nano-to macroscale rhizosphere dynamics – review and research perspectives. Soil Biology and Biochemistry 189:109253

doi: 10.1016/j.soilbio.2023.109253
[87]

Rai PK, Song H, Kim KH. 2023. Nanoparticles modulate heavy-metal and arsenic stress in food crops: hormesis for food security/safety and public health. Science of The Total Environment 902:166064

doi: 10.1016/j.scitotenv.2023.166064
[88]

Ghag SB, Shekhawat UKS, Ganapathi TR. 2015. Fusarium wilt of banana: biology, epidemiology and management. International Journal of Pest Management 61:250−63

doi: 10.1080/09670874.2015.1043972
[89]

Deltour P, França SC, Liparini Pereira O, Cardoso I, De Neve S, et al. 2017. Disease suppressiveness to Fusarium wilt of banana in an agroforestry system: Influence of soil characteristics and plant community. Agriculture, Ecosystems & Environment 239:173−81

doi: 10.1016/j.agee.2017.01.018
[90]

Manjunath M, Khokhar A, Chary GR, Singh M, Yadav SK, et al. 2023. Microbial consortia enhance the yield of maize under sub-humid rainfed production system of India. Frontiers in Sustainable Food Systems 7:1108492

doi: 10.3389/fsufs.2023.1108492
[91]

Mulaudzi MS, Nephali LP, Tugizimana F. 2025. AI-integrated metabolomics maps functional divergence of microbial consortia in field-grown maize. Plant Cell Reports 44:211

doi: 10.1007/s00299-025-03600-z
[92]

Pieterse CMJ, Berendsen RL, de Jonge R, Stringlis IA, Van Dijken AJH, et al. 2021. Pseudomonas simiae WCS417: star track of a model beneficial rhizobacterium. Plant and Soil 461:245−63

doi: 10.1007/s11104-020-04786-9
[93]

Shahwar D, Mushtaq Z, Mushtaq H, Alqarawi AA, Park Y, et al. 2023. Role of microbial inoculants as bio fertilizers for improving crop productivity: a review. Heliyon 9:e16134

doi: 10.1016/j.heliyon.2023.e16134
[94]

Zhen CY, Li WD, Wu SY, Zhao PY, Qin Z, et al. 2022. Effects of Bacillus subtilis CF-3 volatile organic compounds on the transcriptome and proteome of Monilinia fructicola reveal a potential mechanism of action. Biological Control 168:104872

doi: 10.1016/j.biocontrol.2022.104872
[95]

Vimal SR, Singh JS, Kumar A, Prasad SM. 2024. The plant endomicrobiome: structure and strategies to produce stress resilient future crop. Current Research in Microbial Sciences 6:100236

doi: 10.1016/j.crmicr.2024.100236
[96]

Jiang X, Peng Z, Zhang J. 2024. Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation. Food Research International 190:114557

doi: 10.1016/j.foodres.2024.114557
[97]

Lahmamsi H, Ananou S, Lahlali R, Tahiri A. 2024. Lactic acid bacteria as an eco-friendly approach in plant production: current state and prospects. Folia Microbiologica 69:465−89

doi: 10.1007/s12223-024-01146-3
[98]

Duncker KE, Holmes ZA, You L. 2021. Engineered microbial consortia: strategies and applications. Microbial Cell Factories 20:211

doi: 10.1186/s12934-021-01699-9
[99]

Khan ST. 2022. Consortia-based microbial inoculants for sustaining agricultural activities. Applied Soil Ecology 176:104503

doi: 10.1016/j.apsoil.2022.104503
[100]

Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology 15:579−90

doi: 10.1038/nrmicro.2017.87
[101]

Schlaeppi K, Bulgarelli D. 2015. The plant microbiome at work. Molecular Plant-Microbe Interactions 28:212−17

doi: 10.1094/MPMI-10-14-0334-FI
[102]

Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science 10:845

doi: 10.3389/fpls.2019.00845
[103]

Müller DB, Vogel C, Bai Y, Vorholt JA. 2016. The plant microbiota: systems-level insights and perspectives. Annual Review of Genetics 50:211−34

doi: 10.1146/annurev-genet-120215-034952
[104]

Mawarda PC, Le Roux X, Dirk van Elsas J, Salles JF. 2020. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities. Soil Biology and Biochemistry 148:107874

doi: 10.1016/j.soilbio.2020.107874
[105]

Li C, Chen X, Jia Z, Zhai L, Zhang B, et al. 2024. Meta-analysis reveals the effects of microbial inoculants on the biomass and diversity of soil microbial communities. Nature Ecology & Evolution 8:1270−84

doi: 10.1038/s41559-024-02437-1
[106]

Walters WA, Jin Z, Youngblut N, Wallace JG, Sutter J, et al. 2018. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the National Academy of Sciences 115:7368−73

doi: 10.1073/pnas.1800918115
[107]

Compant S, Samad A, Faist H, Sessitsch A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. Journal of Advanced Research 19:29−37

doi: 10.1016/j.jare.2019.03.004
[108]

van der Heijden MGA, Hartmann M. 2016. Networking in the plant microbiome. PLoS Biology 14:e1002378

doi: 10.1371/journal.pbio.1002378
[109]

Kumawat KC, Razdan N, Saharan K. 2022. Rhizospheric microbiome: bio-based emerging strategies for sustainable agriculture development and future perspectives. Microbiological Research 254:126901

doi: 10.1016/j.micres.2021.126901
[110]

Wang Z, Zhong Y, Wang Y, Xie N, Zhang Y, et al. 2025. Ecological functions of plant-beneficial microbiomes and their application prospects in sustainable agriculture. Journal of Applied Ecology 36:1553−66 (in Chinese)

doi: 10.13287/j.1001-9332.202504.036
[111]

Minchev Z, Kostenko O, Soler R, Pozo MJ. 2021. Microbial consortia for effective biocontrol of root and foliar diseases in tomato. Frontiers in Plant Science 12:756368

doi: 10.3389/fpls.2021.756368
[112]

Sadarahalli UP, Manjunatha GN, Kuttappa TC. 2022. Application of Pseudomonas strains for biocontrol of commercial crops susceptible to plant pathogens: a review. Agricultural Reviews 45:600−8

doi: 10.18805/ag.r-2451
[113]

Tao C, Li R, Xiong W, Shen Z, Liu S, et al. 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8:137

doi: 10.1186/s40168-020-00892-z
[114]

Moretti LG, Crusciol CAC, Leite MFA, Momesso L, Bossolani JW, et al. 2024. Diverse bacterial consortia: key drivers of rhizosoil fertility modulating microbiome functions, plant physiology, nutrition, and soybean grain yield. Environmental Microbiome 19:50

doi: 10.1186/s40793-024-00595-0