[1]

Richardson M, Lass‐Flörl C. 2008. Changing epidemiology of systemic fungal infections. Clinical Microbiology and Infection 14:5−24

doi: 10.1111/j.1469-0691.2008.01978.x
[2]

Shankar J. 2022. Insight into the metabolic changes during germination of Aspergillus niger conidia using nLC-qTOF. Biologia 77:2701−14

doi: 10.1007/s11756-022-01115-6
[3]

Richardson MD. 2005. Changing patterns and trends in systemic fungal infections. The Journal of Antimicrobial Chemotherapy 56:i5−i11

doi: 10.1093/jac/dki218
[4]

Thakur R, Anand R, Tiwari S, Singh AP, Tiwary BN, et al. 2015. Cytokines induce effector T-helper cells during invasive aspergillosis; what we have learned about T-helper cells? Frontiers in Microbiology 6:429

doi: 10.3389/fmicb.2015.00429
[5]

Thakur R, Shishodia SK, Sharma A, Chauhan A, Kaur S, et al. 2024. Accelerating the understanding of Aspergillus terreus: epidemiology, physiology, immunology and advances. Current Research in Microbial Sciences 6:100220

doi: 10.1016/j.crmicr.2024.100220
[6]

Shankar J, Tiwari S, Shishodia SK, Gangwar M, Hoda S, et al. 2018. Molecular insights into development and virulence determinants of Aspergilli: a proteomic perspective. Frontiers in Cellular and Infection Microbiology 8:180

doi: 10.3389/fcimb.2018.00180
[7]

Hsieh SH, Kurzai O, Brock M. 2017. Persistence within dendritic cells marks an antifungal evasion and dissemination strategy of Aspergillus terreus. Scientific Reports 7:10590

doi: 10.1038/s41598-017-10914-w
[8]

Anand R, Shankar J, Singh AP, Tiwary BN. 2013. Cytokine milieu in renal cavities of immunocompetent mice in response to intravenous challenge of Aspergillus flavus leading to aspergillosis. Cytokine 61(1):63−70

doi: 10.1016/j.cyto.2012.08.024
[9]

Shankar J, Wu TD, Clemons KV, Monteiro JP, Mirels LF, et al. 2011. Influence of 17β-estradiol on gene expression of Paracoccidioides during mycelia-to-yeast Transition. PLoS One 6(12):e28402

doi: 10.1371/journal.pone.0028402
[10]

Posch W, Blatzer M, Wilflingseder D, Lass-Flörl C. 2018. Aspergillus terreus: novel lessons learned on amphotericin B resistance. Medical Mycology 56:73−82

doi: 10.1093/mmy/myx119
[11]

Shishodia SK, Tiwari S, Shankar J. 2019. Resistance mechanism and proteins in Aspergillus species against antifungal agents. Mycology 10(3):151−65

doi: 10.1080/21501203.2019.1574927
[12]

Zoran T, Sartori B, Sappl L, Aigner M, Sánchez-Reus F, et al. 2018. Azole-resistance in Aspergillus terreus and related species: an emerging problem or a rare phenomenon? Frontiers in Microbiology 9:516

doi: 10.3389/fmicb.2018.00516
[13]

Su HC, Liao CC, Chen CL, Liao WC, Cheng WC. 2022. Concurrent aspergillosis and cystic pulmonary metastases in a patient with tongue squamous cell carcinoma. Open Medicine 17(1):1325−29

doi: 10.1515/med-2022-0527
[14]

Shankar J, Thakur R, Clemons KV, Stevens DA. 2024. Interplay of cytokines and chemokines in aspergillosis. Journal of Fungi 10(4):251

doi: 10.3390/jof10040251
[15]

Hassoun N, Kassem II, Hamze M, EI Tom J, Papon N, et al. 2023. Antifungal use and resistance in a lower–middle-income country: the case of Lebanon. Antibiotics 12(9):1413

doi: 10.3390/antibiotics12091413
[16]

Lamoth F, Juvvadi PR, Steinbach WJ. 2014. Heat shock protein 90 (Hsp90): a novel antifungal target against Aspergillus fumigatus. Critical Reviews in Microbiology 42(2):310−12

doi: 10.3109/1040841x.2014.947239
[17]

Lindquist S, Craig EA. 1988. THE HEAT-SHOCK PROTEINS. Annual Review of Genetics 22(1):631−77

doi: 10.1146/annurev.ge.22.120188.003215
[18]

Tiwari S, Thakur R, Shankar J. 2015. Role of heat-shock proteins in cellular function and in the biology of fungi. Biotechnology Research International 2015:132635

doi: 10.1155/2015/132635
[19]

Verghese J, Abrams J, Wang Y, Morano KA. 2012. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiology and Molecular Biology Reviews 76(2):115−58

doi: 10.1128/MMBR.05018-11
[20]

Hoter A, El-Sabban ME, Naim HY. 2018. The HSP90 family: structure, regulation, function, and implications in health and disease. International Journal of Molecular Sciences 19(9):2560

doi: 10.3390/ijms19092560
[21]

Birbo B, Madu EE, Madu CO, Jain A, Lu Y. 2021. Role of HSP90 in cancer. International Journal of Molecular Sciences 22(19):10317

doi: 10.3390/ijms221910317
[22]

Sanchez J, Carter TR, Cohen MS, Blagg, BSJ. 2020. Old and new approaches to target the Hsp90 chaperone. Current Cancer Drug Targets 20(4):253−70

doi: 10.2174/1568009619666191202101330
[23]

Tiwari S, Shankar J. 2018. Hsp70 in fungi: evolution, function and vaccine candidate. In HSP70 in Human Diseases and Disorders, eds. Asea A, Kaur P. Cham: Springer. pp. 381−400 doi: 10.1007/978-3-319-89551-2_20

[24]

Prodromou C. 2016. Mechanisms of Hsp90 regulation. Biochemical Journal 473(16):2439−52

doi: 10.1042/BCJ20160005
[25]

Mielczarek-Lewandowska A, Hartman ML, Czyz M. 2020. Inhibitors of HSP90 in melanoma. Apoptosis 25:12−28

doi: 10.1007/s10495-019-01577-1
[26]

Sumi MP, Ghosh A. 2022. Hsp90 in human diseases: molecular mechanisms to therapeutic approaches. Cells 11(6):976

doi: 10.3390/cells11060976
[27]

Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, et al. 2010. Hsp90 and its inhibitors (review). Oncology Reports. 23(6):1483−92

doi: 10.3892/or_00000787
[28]

Shishodia SK, Shankar J. 2020. Proteomic analysis revealed ROS-mediated growth inhibition of Aspergillus terreus by shikonin. Journal of Proteomics 224:103849

doi: 10.1016/j.jprot.2020.103849
[29]

Deboer C, Meulman PA, Wnuk RG, Peterson DH. 1970. Geldanamycin, a new antibiotic. The Journal of Antibiotics 23(9):442−47

doi: 10.7164/antibiotics.23.442
[30]

Neckers L, Schulte TW, Mimnaugh E. 1999. Geldanamycin as a potential anti-cancer agent: its molecular target and biochemical activity. Investigational New Drugs 17(4):361−73

doi: 10.1023/a:1006382320697
[31]

Cowen LE, Lindquist S. 2005. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309(5744):2185−89

doi: 10.1126/science.1118370
[32]

Wurnig S, Vogt M, Hogenkamp J, Dienstbier N, Borkhardt A, et al. 2023. Development of the first geldanamycin-based Hsp90 degraders. Frontiers in Chemistry 11:1219883

doi: 10.3389/fchem.2023.1219883
[33]

Hadden MK, Lubbers DJ, Blagg BSJ. 2006. Geldanamycin, radicicol, and chimeric inhibitors of the Hsp90 N-terminal ATP binding site. Current Topics in Medicinal Chemistry 6(11):1173−82

doi: 10.2174/156802606777812031
[34]

Lass-Flörl C, Cuenca-Estrella M, Denning DW, Rodriguez-Tudela JL. 2006. Antifungal susceptibility testing in Aspergillus spp. according to EUCAST methodology. Medical Mycology 44:S319−S325

doi: 10.1080/13693780600779401
[35]

Supko JG, Hickman RL, Grever MR, Malspeis L. 1995. Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemotherapy and Pharmacology 36:305−15

doi: 10.1007/BF00689048
[36]

Benov L. 2019. Effect of growth media on the MTT colorimetric assay in bacteria. PLoS One 14(8):e0219713

doi: 10.1371/journal.pone.0219713
[37]

Cordido A, Vizoso-Gonzalez M, Nuñez-Gonzalez L, Molares-Vila A, Chantada-Vazquez MDP et al. 2022. Quantitative proteomic study unmasks fibrinogen pathway in polycystic liver disease. Biomedicines 10(2):290

doi: 10.3390/biomedicines10020290
[38]

Rio DC, Ares M, Hannon GJ, Nilsen TW. 2010. Purification of RNA using TRIZol (TRI reagent). Cold Spring Harbor Protocols 2010(6):pdb.prot5439

doi: 10.1101/pdb.prot5439
[39]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25(4):402−8

doi: 10.1006/meth.2001.1262
[40]

Eruslanov E, Kusmartsev S. 2010. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods in Molecular Biology 594:57−72

doi: 10.1007/978-1-60761-411-1_4
[41]

Tudzynski P, Heller J, Siegmund U. 2012. Reactive oxygen species generation in fungal development and pathogenesis. Current Opinion in Microbiology 15(6):653−59

doi: 10.1016/j.mib.2012.10.002
[42]

Guedes IA, de Magalhães CS, Dardenne LE. 2014. Receptor–ligand molecular docking. Biophysical Reviews 6(1):75−87

doi: 10.1007/s12551-013-0130-2
[43]

Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. 2009. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. Journal of Computational Chemistry 30:2785−91

doi: 10.1002/jcc.21256
[44]

Prieto-Martínez FD, Arciniega M, Medina-Franco JL. 2018. Acoplamiento molecular: avances recientes y retos [Molecular docking: current advances and challenges]. TIP Revista Especializada En Ciencias Químico-Biológicas 21:65−87

doi: 10.22201/fesz.23958723e.2018.0.143
[45]

Davis AL, Qiao S, Lesson JL, Rojo de la Vega M, Park SL, et al. 2015. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and noxa-dependent apoptosis in malignant melanoma cells. Journal of Biological Chemistry 290(3):1623−38

doi: 10.1074/jbc.M114.592626
[46]

Salam P, Chitta R, Sharif U, Yenisetti S, Bolin K. 2016. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90. Journal of Biomedical Research 30(1):67

doi: 10.7555/jbr.30.20130158
[47]

Zhou Y, Tang S, Chen T, Niu MM. 2019. Structure-Based pharmacophore modeling, virtual screening, molecular docking and biological evaluation for identification of potential poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. Molecules 24(23):4258

doi: 10.3390/molecules24234258
[48]

Soofi A, Taghizadeh M, Tabatabaei SM, Rezaei Tavirani M, Shakib H, et al. 2020. Centrality analysis of protein-protein interaction networks and molecular docking prioritize potential drug-targets in type 1 diabetes. Iranian Journal of Pharmaceutical Research 19(4):121−34

doi: 10.22037/ijpr.2020.113342.14242
[49]

Xu Y, Zou Y, Zhou S, Niu MM, Zhang Y, et al. 2023. Discovery of potent heat shock protein 90 (Hsp90) inhibitors: structure-based virtual screening, molecular dynamics simulation, and biological evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry 38(1):2220558

doi: 10.1080/14756366.2023.2220558
[50]

Karkoulis PK, Stravopodis DJ, Konstantakou EG, Voutsinas GE. 2013. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder cancer cell lines. Cancer Cell International 13(1):11

doi: 10.1186/1475-2867-13-11
[51]

Morris GM, Green LG, Radić Z, Taylor P, Sharpless KB, et al. 2013. Automated docking with protein flexibility in the design of femtomolar "click chemistry" inhibitors of acetylcholinesterase. Journal of Chemical Information and Modeling 53(4):898−906

doi: 10.1021/ci300545a
[52]

Davenport J, Manjarrez JR, Peterson L, Krumm B, Blagg BSJ, et al. 2011. Gambogic acid, a natural product inhibitor of Hsp90. Journal of Natural Products 74(5):1085−92

doi: 10.1021/np200029q
[53]

Tiwari S, Shishodia SK, Shankar J. 2019. Docking analysis of hexanoic acid and quercetin with seven domains of polyketide synthase A provided insight into quercetin-mediated aflatoxin biosynthesis inhibition in Aspergillus flavus. 3 Biotech 9(4):149

doi: 10.1007/s13205-019-1675-y
[54]

Palma LC, Ferreira LFGR, de Oliveira Almeida Petersen AL, Dias BRS, de Menezes JPB, et al. 2019. A docking-based structural analysis of geldanamycin-derived inhibitor binding to human or Leishmania Hsp90. Scientific Reports 9(1):14756

doi: 10.1038/s41598-019-51239-0
[55]

Ren X, Li T, Zhang W, Yang X. 2022. Targeting heat-shock protein 90 in cancer: an update on combination therapy. Cells 11(16):2556

doi: 10.3390/cells11162556
[56]

Vahedi-Shahandashti R, Lass-Flörl C. 2020. Novel antifungal agents and their activity against Aspergillus species. Journal of Fungi 6(4):213

doi: 10.3390/jof6040213
[57]

Banerji U, O'Donnell A, Scurr M, Pacey S, Stapleton S, et al. 2005. Phase I pharmacokinetic and pharmacodynamic study of 17-Allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. Journal of Clinical Oncology 23(18):4152−61

doi: 10.1200/jco.2005.00.612
[58]

Whitesell L, Lindquist SL. 2005. HSP90 and the chaperoning of cancer. Nature Reviews Cancer 5(10):761−72

doi: 10.1038/nrc1716
[59]

Sharma A. 2023. Identification of high-risk single nucleotide polymorphisms (SNPs) of epidermal growth factor receptor (EGFR) and Their Interaction with various TKI drugs. Eurasian Journal of Medicine and Oncology 7(4):334−44

doi: 10.14744/ejmo.2023.33189