[1]

Sudhakaran G. 2025. Impact of climate change on the yield of medicinal plants in recent years. Nature Product Research 39:3614−15

doi: 10.1080/14786419.2024.2372845
[2]

Newman DJ, Cragg GM. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products 83:770−803

doi: 10.1021/acs.jnatprod.9b01285
[3]

Jost R, Schilling S, Melzer R. 2025. Improving medicinal plant cultivation through in-depth understanding of environmental, physiological, metabolic, and genetic constraints. Journal of Experimental Botany 76:1−4

doi: 10.1093/jxb/erae463
[4]

Ansari N, Yadav DS, Singh P, Agrawal M, Agrawal SB. 2023. Ozone exposure response on physiological and biochemical parameters vis-a-vis secondary metabolites in a traditional medicinal plant Sida cordifolia L. Industrial Crops and Products 194:116267

doi: 10.1016/j.indcrop.2023.116267
[5]

Pant P, Pandey S, Dall’Acqua S. 2021. The influence of environmental conditions on secondary metabolites in medicinal plants: a literature review. Chemistry & Biodiversity 18:e2100345

doi: 10.1002/cbdv.202100345
[6]

Sun Y, Alseekh S, Fernie AR. 2023. Plant secondary metabolic responses to global climate change: a meta-analysis in medicinal and aromatic plants. Global Change Biology 29:477−504

doi: 10.1111/gcb.16484
[7]

Yeshi K, Crayn D, Ritmejerytė E, Wangchuk P. 2022. Plant secondary metabolites produced in response to abiotic stresses has potential application in pharmaceutical product development. Molecules 27:313

doi: 10.3390/molecules27010313
[8]

Murray LT, Leibensperger EM, Mickley LJ, Tai APK. 2024. Estimating future climate change impacts on human mortality and crop yields via air pollution. Proceedings of the National Academy of Sciences of the United States of America 121:e2400117121

doi: 10.1073/pnas.2400117121
[9]

Sigmond M, Fyfe JC. 2014. The Antarctic sea ice response to the ozone hole in climate models. Journal of Climate 27:1336−42

doi: 10.1175/JCLI-D-13-00590.1
[10]

Ainsworth EA. 2017. Understanding and improving global crop response to ozone pollution. The Plant Journal 90:886−97

doi: 10.1111/tpj.13298
[11]

Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, et al. 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the sixth assessment report of the Intergovernmental Panel on Climate Change. Vol. 2. Cambridge: Cambridge University Press. 2391 pp. doi: 10.1017/9781009157896

[12]

Jimenez-Montenegro L, Lopez-Fernandez M, Gimenez E. 2021. Worldwide research on the ozone influence in plants. Agronomy 11:1504

doi: 10.3390/agronomy11081504
[13]

Mills G, Sharps K, Simpson D, Pleijel H, Broberg M, et al. 2018. Ozone pollution will compromise efforts to increase global wheat production. Global Change Biology 24:3560−74

doi: 10.1111/gcb.14157
[14]

Saitanis CJ, Bari SM, Burkey KO, Stamatelopoulos D, Agathokleous E. 2014. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone. Environmental Science and Pollution Research 21:13560−71

doi: 10.1007/s11356-014-3286-9
[15]

Emberson LD, Büker P, Ashmore MR, Mills G, Jackson LS, et al. 2009. A comparison of North American and Asian exposure−response data for ozone effects on crop yields. Atmospheric Environment 43:1945−53

doi: 10.1016/j.atmosenv.2009.01.005
[16]

Hough AM, Derwent RG. 1990. Changes in the global concentration of tropospheric ozone due to human activities. Nature 344:645−48

doi: 10.1038/344645a0
[17]

Poornima R, Dhevagi P, Ramya A, Agathokleous E, Sahasa RGK, et al. 2023. Protectants to ameliorate ozone-induced damage in crops − A possible solution for sustainable agriculture. Crop Protection 170:106267

doi: 10.1016/j.cropro.2023.106267
[18]

Feng Z, Xu Y, Kobayashi K, Dai L, Zhang T, et al. 2022. Ozone pollution threatens the production of major staple crops in East Asia. Nature Food 3:47−56

doi: 10.1038/s43016-021-00422-6
[19]

Tai APK, Sadiq M, Pang JYS, Yung DHY, Feng Z. 2021. Impacts of surface ozone pollution on global crop yields: comparing different ozone exposure metrics and incorporating co-effects of CO2. Frontiers in Sustainable Food Systems 5:534616

doi: 10.3389/fsufs.2021.534616
[20]

Gao R, Li Q, Che F, Zhang YP, Zu YG, et al. 2024. 京津冀地区2015−2020 年臭氧浓度时空分布特征及其健康效益评估 [Temporal and spatial distribution characteristics of ozone concentration in Beijing-Tianjin-Hebei region from 2015 to 2020 and its health benefit assessment]. 环境科学 [Environmental Science] 45(5):2525−36 (in Chinese)

doi: 10.13227/j.hjkx.202305280
[21]

Mills G, Buse A, Gimeno B, Bermejo V, Holland M, et al. 2007. A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmospheric Environment 41:2630−43

doi: 10.1016/j.atmosenv.2006.11.016
[22]

Feng Z, Yuan X, Li P, Shang B, Ping Q, et al. 2020. 近地面臭氧浓度升高对陆地生态系统影响研究进展 [Progress in the effects of elevated ground-level ozone on terrestrial ecosystems]. 植物生态学报 [Chinese Journal of Plant Ecology] 44:526−42 (in Chinese)

doi: 10.17521/CJPE.2019.0144
[23]

Zhang Y, Han Z, Li X, Zhang H, Yuan X, et al. 2022. Plants and related carbon cycling under elevated ground-level ozone: a mini review. Applied Geochemistry 144:105400

doi: 10.1016/j.apgeochem.2022.105400
[24]

Singh AA, Ghosh A, Agrawal M, Agrawal SB. 2023. Secondary metabolites responses of plants exposed to ozone: an update. Environmental Science and Pollution Research 30:88281−312

doi: 10.1007/s11356-023-28634-2
[25]

Nowroz F, Hasanuzzaman M, Siddika A, Parvin K, Caparros PG, et al. 2024. Elevated tropospheric ozone and crop production: potential negative effects and plant defense mechanisms. Frontiers in Plant Science 14:1244515

doi: 10.3389/fpls.2023.1244515
[26]

Wang YJ, Li Y, Xu S, He XY, Chen W, et al. 2019. 高浓度臭氧对美国薄荷(Monarda didyma L.)叶片光合及抗性生理特征的影响 [Effects of high concentration ozone on photosynthesis and physiological characteristics of resistance of American mint (Monarda didyma L.)]. 生态学杂志 [Chinese Journal of Ecology] 3:696−703 (in Chinese)

doi: 10.13292/j.1000-4890.201903.019
[27]

Brace S, Peterson DL, Bowers D. 1999. A guide to ozone injury in vascular plants of the Pacific Northwest. Portland, USA: Department of Agriculture, Forest Service, Pacific Northwest Research Station. 63 pp. https://purl.fdlp.gov/GPO/LPS117478

[28]

Guo C, Wang X, Wang Q, Zhao Z, Xie B, et al. 2024. Plant defense mechanisms against ozone stress: Insights from secondary metabolism. Environmental and Experimental Botany 217:105553

doi: 10.1016/j.envexpbot.2023.105553
[29]

Plessl M, Elstner EF, Rennenberg H, Habermeyer J, Heiser I. 2007. Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environmental and Experimental Botany 60:447−57

doi: 10.1016/j.envexpbot.2007.01.003
[30]

Ansari N, Agrawal M, Agrawal SB. 2021. An assessment of growth, floral morphology, and metabolites of a medicinal plant Sida cordifolia L. under the influence of elevated ozone. Environmental Science and Pollution Research 28:832−45

doi: 10.1007/s11356-020-10340-y
[31]

Agathokleous E, Feng Z, Penuelas J. 2022. Ozone pollution disrupts plant–pollinator systems. Trends in Ecology & Evolution 37:939−41

doi: 10.1016/j.tree.2022.08.004
[32]

Duque L, Poelman EH, Steffan-Dewenter I. 2021. Effects of ozone stress on flowering phenology, plant-pollinator interactions and plant reproductive success. Environmental Pollution 272:115953

doi: 10.1016/j.envpol.2020.115953
[33]

Mohamed E, Ansari N, Yadav DS, Agrawal M, Agrawal SB. 2021. Salinity alleviates the toxicity level of ozone in a halophyte Mesembryanthemum crystallinum L. Ecotoxicology 30:689−704

doi: 10.1007/s10646-021-02386-6
[34]

Gu X, Wang T, Li C. 2023. Elevated ozone decreases the multifunctionality of belowground ecosystems. Global Change Biology 29:890−908

doi: 10.1111/gcb.16507
[35]

Yuan Y, Huang LQ. 2020. 道地药材分子生药学研究进展和发展趋势 [Molecular pharmacognosy in Daodi herbs]. 科学通报 [Chinese Science Bulletin] 65:1093−102 (in Chinese)

doi: 10.1360/TB-2020-0184
[36]

Marchica A, Lorenzini G, Papini R, Bernardi R, Nali C, et al. 2019. Signaling molecules responsive to ozone-induced oxidative stress in Salvia officinalis. Science of The Total Environment 657:568−76

doi: 10.1016/j.scitotenv.2018.11.472
[37]

Madheshiya P, Gupta GS, Sahoo A, Tiwari S. 2023. Role of elevated ozone on development and metabolite contents of lemongrass [Cymbopogon flexuosus (Steud.) (Wats.)]. Metabolites 13:597

doi: 10.3390/metabo13050597
[38]

Marchica A, Ascrizzi R, Flamini G, Cotrozzi L, Tonelli M, et al. 2021. Ozone as eustress for enhancing secondary metabolites and bioactive properties in Salvia officinalis. Industrial Crops and Products 170:113730

doi: 10.1016/j.indcrop.2021.113730
[39]

Pellegrini E, Campanella A, Cotrozzi L, Tonelli M, Nali C, et al. 2018. Ozone primes changes in phytochemical parameters in the medicinal herb Hypericum perforatum (St. John's wort). Industrial Crops and Products 126:119−28

doi: 10.1016/j.indcrop.2018.10.002
[40]

Mayelyn MDA. 2015. Effects of plant stress on facultative apomixis in Boechera (Brassicaceae). Thesis. Utah State University, USA. 128 pp. doi: 10.26076/20c6-51c3

[41]

Hong Y, Boiti A, Vallone D, Foulkes NS. 2024. Reactive oxygen species signaling and oxidative stress: transcriptional regulation and evolution. Antioxidants 13:312

doi: 10.3390/antiox13030312
[42]

Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, et al. 2024. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant’s response to biotic stress. Plant Cell Reports 43:1−25

doi: 10.1007/s00299-024-03343-3
[43]

Marchica A, Pellegrini E. 2023. The intriguous roles of phytohormones in plant response to ozone interacting with other major climate change stressors. In Plant Hormones and Climate Change, eds. Ahammed GJ, Yu J. Singapore: Springer. pp. 75−94 doi: 10.1007/978-981-19-4941-8_4

[44]

Hasan MM, Rahman MA, Skalicky M, Alabdallah NM, Waseem M, et al. 2021. Ozone induced stomatal regulations, MAPK and phytohormone signaling in plants. International Journal of Molecular Sciences 22:6304

doi: 10.3390/ijms22126304
[45]

Pellegrini E, Trivellini A, Campanella A, Francini A, Lorenzini G, et al. 2013. Signaling molecules and cell death in Melissa officinalis plants exposed to ozone. Plant Cell Reports 32:1965−80

doi: 10.1007/s00299-013-1508-0
[46]

Fu X, Li C, Zhao M, Xu Y, Guo L, et al. 2025. Ozone stress alters amino acid and flavonoid metabolism of Ziziphi Spinosae Folium. Journal of Hazardous Materials 494:138647

doi: 10.1016/j.jhazmat.2025.138647
[47]

Trovato M, Funck D, Forlani G, Okumoto S, Amir R. 2021. Editorial: Amino acids in plants: regulation and functions in development and stress defense. Frontiers in plant science 12:772810

doi: 10.3389/fpls.2021.772810
[48]

Gade A, Kumar MS. 2023. Gut microbial metabolites of dietary polyphenols and their potential role in human health and diseases. Journal of Physiology and Biochemistry 79:695−718

doi: 10.1007/s13105-023-00981-1
[49]

Bortolin RC, Caregnato FF, Divan AM Jr, Reginatto FH, Gelain DP, et al. 2014. Effects of chronic elevated ozone concentration on the redox state and fruit yield of red pepper plant Capsicum baccatum. Ecotoxicology and Environmental Safety 100:114−21

doi: 10.1016/j.ecoenv.2013.09.035
[50]

Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry 383:132531

doi: 10.1016/j.foodchem.2022.132531
[51]

Wang Q, Liu Y, Su Y, Cheng C, Shang B, et al. 2022. Effects of elevated ozone on bacterial communities inhibiting the phyllo- and endo-spheres of rice plants. Science of The Total Environment 15:154705

doi: 10.1016/j.scitotenv.2022.154705
[52]

Loreto F, Schnitzler JP. 2010. Abiotic stresses and induced BVOCs. Trends in Plant Science 15:154−66

doi: 10.1016/j.tplants.2009.12.006
[53]

Elshafie HS, Camele I, Mohamed AA. 2023. A comprehensive review on the biological, agricultural and pharmaceutical properties of secondary metabolites based-plant origin. International Journal of Molecular Sciences 24:3266

doi: 10.3390/ijms24043266
[54]

Ansari N, Yadav DS, Agrawal M, Agrawal SB. 2021. The impact of elevated ozone on growth, secondary metabolites, production of reactive oxygen species and antioxidant response in an anti-diabetic plant Costus pictus. Functional Plant Biology 48:597−610

doi: 10.1071/FP20324
[55]

Zhang H, Wang X, Guo Y, Liu X, Zhao X, et al. 2021. Thirteen bisbenzylisoquinoline alkaloids in five Chinese medicinal plants: Botany, traditional uses, phytochemistry, pharmacokinetic and toxicity studies. Journal of Ethnopharmacology 268:113566

doi: 10.1016/j.jep.2020.113566
[56]

Agathokleous E, Araminiene V, Belz RG, Calatayud V, De Marco A, et al. 2019. A quantitative assessment of hormetic responses of plants to ozone. Environmental Research 176:108527

doi: 10.1016/j.envres.2019.108527
[57]

Bortolin RC, Caregnato FF, Divan Junior AM, Zanotto-Filho A, Moresco KS, et al. 2016. Chronic ozone exposure alters the secondary metabolite profile, antioxidant potential, anti-inflammatory property, and quality of red pepper fruit from Capsicum baccatum. Ecotoxicology and Environmental Safety 129:16−24

doi: 10.1016/j.ecoenv.2016.03.004
[58]

He X, Huang W, Chen W, Dong T, Liu C, et al. 2009. Changes of main secondary metabolites in leaves of Ginkgo biloba in response to ozone fumigation. Journal of Environmental Sciences 21:199−203

doi: 10.1016/S1001-0742(08)62251-2
[59]

Wang C. 2021. 长期臭氧熏蒸对银杏抗坏血酸-谷胱甘肽循环及相关抗氧化基因表达的影响 [Effects of Long-term Ozone Fumigation on Ascorbic acid Glutathione Cycle and Expression of Related Antioxidant genes in Ginkgo biloba L]. Thesis. Liaoning University, China. pp. 45−49 (in Chinese)

[60]

Ludwikow A, Sadowski J. 2008. Gene networks in plant ozone stress response and tolerance. Journal of Integrative Plant Biology 50:1256−67

doi: 10.1111/j.1744-7909.2008.00738.x
[61]

Wang T, Gu X, Guo L, Zhang X, Li C. 2024. Integrated metabolomics and transcriptomics analysis reveals γ-aminobutyric acid enhances the ozone tolerance of wheat by accumulation of flavonoids. Journal of Hazardous Materials 465:133202

doi: 10.1016/j.jhazmat.2023.133202
[62]

Qiu Y, An K, Sun J, Chen X, Gong X, et al. 2019. Investigating the effect of methyl jasmonate and melatonin on resistance of Malus crabapple ‘Hong Jiu’ to ozone stress. Environmental Science and Pollution Research 26:27761−68

doi: 10.1007/s11356-019-05946-w
[63]

Yadav P, Mina U. 2022. Ozone stress responsive gene database (OSRGD ver. 1.1): a literature curated database for insight into plants' response to ozone stress. Plant Gene 31:100368

doi: 10.1016/j.plgene.2022.100368
[64]

Photolo MM, Mavumengwana V, Sitole L, Tlou MG. 2020. Antimicrobial and antioxidant properties of a bacterial endophyte, Methylobacterium radiotolerans MAMP 4754, isolated from Combretum erythrophyllum seeds. International Journal of Microbiology 2020:9483670

doi: 10.1155/2020/9483670
[65]

Huang WY, Cai YZ, Xing J, Corke H, Sun M. 2007. A potential antioxidant resource: Endophytic fungi from medicinal plants. Economic Botany 61:14−30

doi: 10.1663/0013-0001(2007)61[14:APAREF]2.0.CO;2
[66]

Cui JL, Guo SX, Xiao PG. 2017. 内生菌与植物的互作关系及对药用植物的影响 [Interaction between endophytes and host plant and the role of endophytes in genuineness analysis of medicinal plant]. 药学学报 [Acta Pharmaceutica Sinica] 52:214−21 (in Chinese)

doi: 10.16438/j.0513-4870.2016-0726
[67]

Verma V, Ravindran P, Kumar PP. 2016. Plant hormone-mediated regulation of stress responses. BMC Plant Biology 16:86

doi: 10.1186/s12870-016-0771-y
[68]

Chen JY, Lu RH, Wang L, Zhang L, Chen HM. 2016. 药用植物内生菌抗氧化活性研究进展 [Recent progress in study on anti-oxidant activity of endophytes in medicinal plants]. 中草药 [Chinese Herbal Medicine] 47:3720−27 (in Chinese)

doi: 10.7501/j.issn.0253-2670.2016.20.027
[69]

Hamilton CE, Gundel PE, Helander M, Saikkonen K. 2012. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity 54:1−10

doi: 10.1007/s13225-012-0158-9
[70]

Liu J, Song M, Wei X, Zhang H, Bai Z, et al. 2022. Responses of phyllosphere microbiome to ozone stress: abundance, community compositions and functions. Microorganisms 10:680

doi: 10.3390/microorganisms10040680
[71]

Flores-Almaraz VS, Truong C, Hernández-Oaxaca D, Reyes-Galindo V, Mastretta-Yanes A, et al. 2024. Foliar mycobiome remains unaltered under urban air-pollution but differentially express stress-related genes. Microbial Ecology 87:72

doi: 10.1007/s00248-024-02387-y
[72]

Fan Y, Tang X, Liu Q, Yin C. 2022. 木本植物种子内生菌研究进展 [Advances in the study of endophytes in woody plant seeds]. 应用与环境生物学报 [Chinese Journal of Applied & Environmental Biology] 28:1375−83 (in Chinese)

doi: 10.19675/j.cnki.1006-687x.2021.04063
[73]

Redecker D, Kodner R, Graham LE. 2000. Glomalean fungi from the Ordovician. Science 289:1920−21

doi: 10.1126/science.289.5486.1920
[74]

Gabriele B, Jos MR. 2018. Saving seed microbiomes. The ISME Journal 12:1167−70

doi: 10.1038/s41396-017-0028-2
[75]

Ueno AC, Gundel PE, Molina-Montenegro MA, Ramos P, Ghersa CM, et al. 2021. Getting ready for the ozone battle: vertically transmitted fungal endophytes have transgenerational positive effects in plants. Plant Cell & Environment 44:2716−28

doi: 10.1111/pce.14047
[76]

Ueno AC, Gundel PE, Ghersa CM, Demkura PV, Card SD, et al. 2020. Ontogenetic and trans-generational dynamics of a vertically transmitted fungal symbiont in an annual host plant in ozone-polluted settings. Plant Cell & Environment 43:2540−50

doi: 10.1111/pce.13859
[77]

Ray T, Pandey SS, Pandey A, Srivastava M, Shanker K, et al. 2019. Endophytic consortium with diverse gene-regulating capabilities of benzylisoquinoline alkaloids biosynthetic pathway can enhance endogenous morphine biosynthesis in Papaver somniferum. Frontiers in Microbiology 10:925

doi: 10.3389/fmicb.2019.00925
[78]

Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634−63

doi: 10.1111/1574-6976.12028
[79]

Agathokleous E, Feng Z, Oksanen E, Sicard P, Wang Q, et al. 2020. Ozone affects plant, insect, and soil microbial communities: a threat to terrestrial ecosystems and biodiversity. Science Advances 6:eabc1176

doi: 10.1126/sciadv.abc1176
[80]

Zhang K, Zentella R, Burkey KO, Liao HL, Tisdale RH. 2024. Long‐term tropospheric ozone pollution disrupts plant‐microbe‐soil interactions in the agroecosystem. Global Change Biology 30:e17215

doi: 10.1111/gcb.17215
[81]

Mu P, Jin Q, Liu ZB, Deng YZ, Liu N. 2022. 合成微生物群落构建技术在药用植物栽培领域的应用 [Application on construction technology of synthetic microbial communities in field of medicinal plant cultivation]. 中草药 [Chinese Herbal Medicine] 53:2506−16 (in Chinese)

doi: 10.7501/j.issn.0253-2670.2022.08.028
[82]

Gao F, Catalayud V, Paoletti E, Hoshika Y, Feng Z. 2017. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants. Environmental Pollution 230:268−79

doi: 10.1016/j.envpol.2017.06.044
[83]

Hoshika Y, Agathokleous E, Moura BB, Paoletti E. 2024. Ozone risk assessment with free-air controlled exposure (FACE) experiments: a critical revisit. Environmental Research 255:119215

doi: 10.1016/j.envres.2024.119215
[84]

Barros E, Lezar S, Anttonen MJ, Van Dijk JP, Röhlig RM, et al. 2010. Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Plant Biotechnology Journal 8:436−51

doi: 10.1111/j.1467-7652.2009.00487.x
[85]

Mergner J, Kuster B. 2022. Plant proteome dynamics. Annual Review of Plant Biology 73:67−92

doi: 10.1146/annurev-arplant-102620-031308
[86]

Bortesi L, Fischer R. 2015. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41−52

doi: 10.1016/j.biotechadv.2014.12.006
[87]

Watanabe M, Li J, Matsumoto M, Aoki T, Ariura R, et al. 2022. Growth and photosynthetic responses to ozone of Siebold’s beech seedlings grown under elevated CO2 and soil nitrogen supply. Environmental Pollution 304:119233

doi: 10.1016/j.envpol.2022.119233
[88]

Hansen EMØ, Hauggaard-Nielsen H, Launay M, Rose P, Mikkelsen TN. 2019. The impact of ozone exposure, temperature and CO2 on the growth and yield of three spring wheat varieties. Environmental and Experimental Botany 168:103868

doi: 10.1016/j.envexpbot.2019.103868
[89]

Otu-Larbi F, Conte A, Fares S, Wild O, Ashworth K. 2020. Current and future impacts of drought and ozone stress on Northern Hemisphere forests. Global Change Biology 26:6218−34

doi: 10.1111/gcb.15339
[90]

Zhao T, Dai A. 2017. Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Climatic Change 144:535−48

doi: 10.1007/s10584-016-1742-x
[91]

Li L, Manning WJ, Tong L, Wang X. 2015. Chronic drought stress reduced but not protected Shantung maple (Acer truncatum Bunge) from adverse effects of ozone (O3) on growth and physiology in the suburb of Beijing, China. Environmental Pollution 201:34−41

doi: 10.1016/j.envpol.2015.02.023
[92]

Bohler S, Cuypers A, Vangronsveld J. 2014. Interactive effects between ozone and drought: sorrow or joy? In Combined Stresses in Plants, ed. Mahalingam R. Cham: Springer. pp. 147−57 doi: 10.1007/978-3-319-07899-1_7

[93]

Feng Z, Wang S, Szantoi Z, Chen S, Wang X. 2010. Protection of plants from ambient ozone by applications of ethylenediurea (EDU): a meta-analytic review. Environmental Pollution 158:3236−42

doi: 10.1016/j.envpol.2010.07.009
[94]

Didyk NP, Blum OB. 2011. Natural antioxidants of plant origin against ozone damage of sensitive crops. Acta Physiologiae Plantarum 33:25−34

doi: 10.1007/s11738-010-0527-5
[95]

da Rosa Santos AC, Furlan CM. 2013. Levels of phenolic compounds in Tibouchina pulchra after fumigation with ozone. Atmospheric Pollution Research 4:250−56

doi: 10.5094/APR.2013.027
[96]

Döring AS, Pellegrini E, Della Batola M, Nali C, Lorenzini G, et al. 2014. How do background ozone concentrations affect the biosynthesis of rosmarinic acid in Melissa officinalis? Journal of Plant Physiology 171:35−41

doi: 10.1016/j.jplph.2013.11.005
[97]

Döring AS, Cotrozzi L, Lorenzini G, Nali C, Petersen M, et al. 2020. Deciphering the role of low molecular weight antioxidants in the sensitivity of Melissa officinalis L. to realistic ozone concentrations. Industrial Crops and Products 150:112369

doi: 10.1016/j.indcrop.2020.112369
[98]

Ansari N, Yadav DS, Singh P, Agrawal M, Agrawal SB. 2025. The ability of low levels of elevated ozone to change the growth and phytochemical constituents of a medicinal plant Andrographis paniculata (Burm. f.) Nees. Protoplasma 262:455−73

doi: 10.1007/s00709-024-02011-3