[1]

Zhang Z, Wu P, Wang X, Pang Q, Wang Y, et al. 2025. Ecological risk assessment of marine plastic pollution. Nature Sustainability 8:1143−1153

doi: 10.1038/s41893-025-01620-x
[2]

Liu X, Xiong Y, Gou X, Zhao L, Wang S, et al. 2025. Environmental impacts of polymeric flame retardant breakdown. Nature Sustainability 8:432−445

doi: 10.1038/s41893-025-01513-z
[3]

Zahn D, Arp HPH, Fenner K, Georgi A, Hafner J, et al. 2024. Should transformation products change the way we manage chemicals? Environmental Science & Technology 58:7710−7718

doi: 10.1021/acs.est.4c00125
[4]

Hu J, Lyu Y, Chen H, Li S, Sun W. 2023. Suspect and nontarget screening reveal the underestimated risks of antibiotic transformation products in wastewater treatment plant effluents. Environmental Science & Technology 57:17439−17451

doi: 10.1021/acs.est.3c05008
[5]

Nnadozie CF, Kumari S, Bux F. 2017. Status of pathogens, antibiotic resistance genes, and antibiotic residues in wastewater treatment systems. Reviews in Environmental Science and Bio-Technology 16:491−515

doi: 10.1007/s11157-017-9438-x
[6]

Balcázar JL, Subirats J, Borrego CM. 2015. The role of biofilms as environmental reservoirs of antibiotic resistance. Frontiers in Microbiology 6:1216

doi: 10.3389/fmicb.2015.01216
[7]

Huang Z, Hu LX, Yang JB, Liu YH, He LY, et al. 2025. Suspect and nontarget screening of sulfonamides and novel transformation products in pharmaceutical wastewater-contaminated areas: distribution, migration, and environmental risks. Environmental Science & Technology 59:15978−15989

doi: 10.1021/acs.est.5c06191
[8]

Jia A, Wan Y, Xiao Y, Hu J. 2012. Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant. Water Research 46:387−394

doi: 10.1016/j.watres.2011.10.055
[9]

Li X, Shi H, Li K, Zhang L, Gan Y. 2014. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering 8:888−894

doi: 10.1007/s11783-014-0735-0
[10]

Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, et al. 2020. A critical review on antibiotics and hormones in swine wastewater: water pollution problems and control approaches. Journal of Hazardous Materials 387:121682

doi: 10.1016/j.jhazmat.2019.121682
[11]

Lin AYC, Tsai YT. 2009. Occurrence of pharmaceuticals in Taiwan's surface waters: impact of waste streams from hospitals and pharmaceutical production facilities. Science of The Total Environment 407:3793−3802

doi: 10.1016/j.scitotenv.2009.03.009
[12]

An J, Chen H, Wei S, Gu J. 2015. Antibiotic contamination in animal manure, soil, and sewage sludge in Shenyang, Northeast China. Environmental Earth Sciences 74:5077−5086

doi: 10.1007/s12665-015-4528-y
[13]

Hughes SR, Kay P, Brown LE. 2013. Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems. Environmental Science & Technology 47:661−677

doi: 10.1021/es3030148
[14]

Yang Y, Zhang X, Jiang J, Han J, Li W, et al. 2022. Which micropollutants in water environments deserve more attention globally? Environmental Science & Technology 56:13−29

doi: 10.1021/acs.est.1c04250
[15]

Deng Y, Li B, Zhang T. 2018. Bacteria that make a meal of sulfonamide antibiotics: blind spots and emerging opportunities. Environmental Science & Technology 52:3854−3868

doi: 10.1021/acs.est.7b06026
[16]

Tian SQ, Wang L, Liu YL, Yang T, Huang ZS, et al. 2019. Enhanced permanganate oxidation of sulfamethoxazole and removal of dissolved organics with biochar: formation of highly oxidative manganese intermediate species and in situ activation of biochar. Environmental Science & Technology 53:5282−5291

doi: 10.1021/acs.est.9b00180
[17]

Kümmerer K. 2009. Antibiotics in the aquatic environment – a review – Part I. Chemosphere 75:417−434

doi: 10.1016/j.chemosphere.2008.11.086
[18]

Kulik K, Lenart-Boroń A, Wyrzykowska K. 2023. Impact of antibiotic pollution on the bacterial population within surface water with special focus on mountain rivers. Water 15975

doi: 10.3390/w15050975
[19]

Underwood JC, Harvey RW, Metge DW, Repert DA, Baumgartner LK, et al. 2011. Effects of the antimicrobial sulfamethoxazole on groundwater bacterial enrichment. Environmental Science & Technology 45:3096−3101

doi: 10.1021/es103605e
[20]

Demoling LA, Bååth E, Greve G, Wouterse M, Schmitt H. 2009. Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biology and Biochemistry 41:840−848

doi: 10.1016/j.soilbio.2009.02.001
[21]

Cycoń M, Piotrowska-Seget Z. 2016. Pyrethroid-degrading microorganisms and their potential for the bioremediation of contaminated soils: a review. Frontiers in Microbiology 7:1463

doi: 10.3389/fmicb.2016.01463
[22]

Bengtsson-Palme J, Joakim Larsson DGJ. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environment International 86:140−149

doi: 10.1016/j.envint.2015.10.015
[23]

Yu W, Hayat K, Ma J, Fan X, Yang Y, et al. 2024. Effect of antibiotic perturbation on nitrous oxide emissions: an in-depth analysis. Critical Reviews in Environmental Science and Technology 54:1612−1632

doi: 10.1080/10643389.2024.2339795
[24]

Kotzerke A, Sharma S, Schauss K, Heuer H, Thiele-Bruhn S, et al. 2008. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure. Environmental Pollution 153:315−322

doi: 10.1016/j.envpol.2007.08.020
[25]

Bottery MJ, Matthews JL, Wood AJ, Johansen HK, Pitchford JW, et al. 2022. Inter-species interactions alter antibiotic efficacy in bacterial communities. The ISME Journal 16:812−821

doi: 10.1038/s41396-021-01130-6
[26]

Cubillos-Ruiz A, Alcantar MA, Donghia NM, Cárdenas P, Avila-Pacheco J, et al. 2022. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nature Biomedical Engineering 6:910−921

doi: 10.1038/s41551-022-00871-9
[27]

Sharma A, Wood KB. 2021. Spatial segregation and cooperation in radially expanding microbial colonies under antibiotic stress. The ISME Journal 15:3019−3033

doi: 10.1038/s41396-021-00982-2
[28]

Nawaz MZ, Khalid HR, Mirza MU, Xu L, Haider SZ, et al. 2024. Elucidating the bioremediation potential of laccase and peroxidase enzymes from Bacillus ligniniphilus L1 in antibiotic degradation: a computationally guided study. Bioresource Technology 413:131520

doi: 10.1016/j.biortech.2024.131520
[29]

Ricken B, Kolvenbach BA, Bergesch C, Benndorf D, Kroll K, et al. 2017. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics. Scientific Reports 7:15783

doi: 10.1038/s41598-017-16132-8
[30]

Deng Y, Huang Y, Che Y, Yang Y, Yin X, et al. 2021. Microbiome assembly for sulfonamide subsistence and the transfer of genetic determinants. The ISME Journal 15:2817−2829

doi: 10.1038/s41396-021-00969-z
[31]

Wright GD. 2005. Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced Drug Delivery Reviews 57:1451−1470

doi: 10.1016/j.addr.2005.04.002
[32]

Wu T, Guo SZ, Zhu HZ, Yan L, Liu ZP, et al. 2023. The sulfonamide-resistance dihydropteroate synthase gene is crucial for efficient biodegradation of sulfamethoxazole by Paenarthrobacter species. Applied Microbiology and Biotechnology 107:5813−5827

doi: 10.1007/s00253-023-12679-x
[33]

Vega NM, Gore J. 2014. Collective antibiotic resistance: mechanisms and implications. Current Opinion in Microbiology 21:28−34

doi: 10.1016/j.mib.2014.09.003
[34]

Vetsigian K. 2017. Diverse modes of eco-evolutionary dynamics in communities of antibiotic-producing microorganisms. Nature Ecology & Evolution 1:189

doi: 10.1038/s41559-017-0189
[35]

Kelsic ED, Zhao J, Vetsigian K, Kishony R. 2015. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 521:516−519

doi: 10.1038/nature14485
[36]

Shi K, Xu WB, Cui HL, Zhang LY, He JY, et al. 2025. Regulating community redox metabolism for systematic mitigation of antibiotic chemical and biological risks. Water Research 285:124147

doi: 10.1016/j.watres.2025.124147
[37]

Shi K, Xu JM, Cui HL, Cheng HY, Liang B, et al. 2024. Microbiome regulation for sustainable wastewater treatment. Biotechnology Advances 77:108458

doi: 10.1016/j.biotechadv.2024.108458
[38]

Chen J, Chen X, Zhu Y, Yan S, Xie S. 2024. New insights into bioaugmented removal of sulfamethoxazole in sediment microcosms: degradation efficiency, ecological risk and microbial mechanisms. Microbiome 12:43

doi: 10.1186/s40168-023-01741-5
[39]

He Q, Lin Z, Zhang X, Qin M, Huang Y, et al. 2024. Designing a reengineered probiotic yeast to spontaneously degrade residual antibiotics in gut during antimicrobial therapy. Journal of Cleaner Production 483:144177

doi: 10.1016/j.jclepro.2024.144177
[40]

Qi M, Liang B, Zhang L, Ma X, Yan L, et al. 2021. Microbial interactions drive the complete catabolism of the antibiotic sulfamethoxazole in activated sludge microbiomes. Environmental Science & Technology 55:3270−3282

doi: 10.1021/acs.est.0c06687
[41]

Purkhold U, Pommerening-Röser A, Juretschko S, Schmid Markus C, Koops HP, et al. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology 66:5368−5382

doi: 10.1128/AEM.66.12.5368-5382.2000
[42]

de la Casa J, Nogué S, De Cáceres M, Pla-Rabés S, Sardans J, et al. 2025. Unveiling two millennia of ecosystem changes in the Azores through elementome trajectory analysis. Ecological Indicators 176:113630

doi: 10.1016/j.ecolind.2025.113630
[43]

De Cáceres M, Coll L, Legendre P, Allen RB, Wiser SK, et al. 2019. Trajectory analysis in community ecology. Ecological Monographs 89:e01350

doi: 10.1002/ecm.1350
[44]

Rogue H, Miège C, Bonnineau C, Daval A, Depret G, et al. 2025. Sulfamethazine biodegradation in sediments is driven by chronic exposure concentrations. Ecotoxicology and Environmental Safety 303:118785

doi: 10.1016/j.ecoenv.2025.118785
[45]

Katipoglu-Yazan T, Merlin C, Pons MN, Ubay-Cokgor E, Orhon D. 2016. Chronic impact of sulfamethoxazole on the metabolic activity and composition of enriched nitrifying microbial culture. Water Research 100:546−555

doi: 10.1016/j.watres.2016.05.043
[46]

Fishbein SRS, Mahmud B, Dantas G. 2023. Antibiotic perturbations to the gut microbiome. Nature Reviews Microbiology 21:772−788

doi: 10.1038/s41579-023-00933-y
[47]

McDonnell L, Gilkes A, Ashworth M, Rowland V, Harries TH, et al. 2021. Association between antibiotics and gut microbiome dysbiosis in children: systematic review and meta-analysis. Gut Microbes 13:1870402

doi: 10.1080/19490976.2020.1870402
[48]

Abeles SR, Jones MB, Santiago-Rodriguez TM, Ly M, Klitgord N, et al. 2016. Microbial diversity in individuals and their household contacts following typical antibiotic courses. Microbiome 4:39

doi: 10.1186/s40168-016-0187-9
[49]

Liu F, Wu J, Ying GG, Luo Z, Feng H. 2012. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Applied Microbiology and Biotechnology 95:1615−1623

doi: 10.1007/s00253-011-3831-0
[50]

Wu X, Wu X, Li J, Wu Q, Ma Y, et al. 2020. Cross-feeding between members of Thauera spp. And Rhodococcus spp. drives quinoline-denitrifying degradation in a hypoxic bioreactor. mSphere 5:e00246-20

doi: 10.1128/msphere.00246-20
[51]

Xu J, Sheng M, Yang Z, Qiu J, Zhang J, et al. 2021. Lysobacter gilvus sp. nov., isolated from activated sludge. Archives of Microbiology 203:7−11

doi: 10.1007/s00203-020-01943-7
[52]

Huang Y, Pan A, Song Y, Deng Y, Wu ALH, et al. 2024. Strain-level diversity in sulfonamide biodegradation: adaptation of Paenarthrobacter to sulfonamides. The ISME Journal 18:wrad040

doi: 10.1093/ismejo/wrad040
[53]

Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. 2014. mediation: R package for causal mediation analysis. Journal of Statistical Software 59:1−38

doi: 10.18637/jss.v059.i05