[1]

Blettler MCM, Mitchell C. 2021. Dangerous traps: macroplastic encounters affecting freshwater and terrestrial wildlife. Science of The Total Environment 798:149317

doi: 10.1016/j.scitotenv.2021.149317
[2]

Santimano MC, Prabhu NN, Garg S. 2009. PHA production using low-cost agro-industrial wastes by Bacillus sp. strain COL1/A6. Research Journal of Microbiology 4:89−96

doi: 10.3923/jm.2009.89.96
[3]

Quintero-Silva MJ, Suárez-Rodríguez SJ, Gamboa-Suárez MA, Blanco-Tirado C, Combariza MY. 2024. Polyhydroxyalkanoates production from cacao fruit liquid residues using a native Bacillus megaterium strain: preliminary study. Journal of Polymers and the Environment 32:1289−303

doi: 10.1007/s10924-023-03018-2
[4]

Bhatia SK. 2025. Research progress on the synthesis, modification, and applications of microbial biopolymers. Polymers 17(15):2053

doi: 10.3390/polym17152053
[5]

Rehm BHA. 2010. Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews Microbiology 8:578−92

doi: 10.1038/nrmicro2354
[6]

López-Cuellar MR, Alba-Flores J, Gracida Rodríguez JN, Pérez-Guevara F. 2011. Production of polyhydroxyalkanoates (PHAs) with canola oil as carbon source. International Journal of Biological Macromolecules 48:74−80

doi: 10.1016/j.ijbiomac.2010.09.016
[7]

Shen XW, Yang Y, Jian J, Wu Q, Chen GQ. 2009. Production and characterization of homopolymer poly(3-hydroxyvalerate) (PHV) accumulated by wild type and recombinant Aeromonas hydrophila strain 4AK4. Bioresource Technology 100(18):4296−99

doi: 10.1016/j.biortech.2009.03.065
[8]

Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V. 2014. Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polymer Letters 8(11):791−808

doi: 10.3144/expresspolymlett.2014.82
[9]

Vigneswari S, Noor MSM, Amelia TSM, Balakrishnan K, Adnan A, et al. 2021. Recent advances in the biosynthesis of polyhydroxyalkanoates from lignocellulosic feedstocks. Life 11:807

doi: 10.3390/life11080807
[10]

Bellini S, Demichelis F, Tommasi T, Tarraran L, Fino D. 2024. Integrated biorefinery strategy for poly(3-hydroxybutyrate) accumulation in Cupriavidus necator DSM 545 using a sugar rich syrup from cereal waste and acetate from gas fermentation. Journal of Environmental Chemical Engineering 12:111661

doi: 10.1016/j.jece.2023.111661
[11]

Guzmán-Lagunes F, Wongsirichot P, Winterburn J, Guerrero Sanchez C, Montiel C. 2023. Polyhydroxyalkanoates production: a challenge for the plastic industry. Industrial & Engineering Chemistry Research 62(44):18133−58

doi: 10.1021/acs.iecr.2c04614
[12]

Sen KY, Baidurah S. 2021. Renewable biomass feedstocks for production of sustainable biodegradable polymer. Current Opinion in Green and Sustainable Chemistry 27:100412

doi: 10.1016/j.cogsc.2020.100412
[13]

Rosenboom JG, Langer R, Traverso G. 2022. Bioplastics for a circular economy. Nature Reviews Materials 7:117−37

doi: 10.1038/s41578-021-00407-8
[14]

Karp SG, Woiciechowski AL, Soccol VT, Soccol CR. 2013. Pretreatment strategies for delignification of sugarcane bagasse: a review. Brazilian Archives of Biology and Technology 56(4):679−89

doi: 10.1590/s1516-89132013000400019
[15]

Andhalkar VV, Ahorsu R, de Maria PD, Winterburn J, Medina F, et al. 2022. Valorization of lignocellulose by producing polyhydroxyalkanoates under circular bioeconomy premises: facts and challenges. ACS Sustainable Chemistry & Engineering 10(50):16459−75

doi: 10.1021/acssuschemeng.2c04925
[16]

Mozejko-Ciesielska J, Moraczewski K, Czaplicki S, Singh V. 2023. Production and characterization of polyhydroxyalkanoates by Halomonas alkaliantarctica utilizing dairy waste as feedstock. Scientific Reports 13:22289

doi: 10.1038/s41598-023-47489-8
[17]

Możejko-Ciesielska J, Ray S, Sankhyan S. 2023. Recent challenges and trends of polyhydroxyalkanoate production by extremophilic bacteria using renewable feedstocks. Polymers 15(22):4385

doi: 10.3390/polym15224385
[18]

Shin Y, Jung HJ, Oh J, Kim S, Lee Y, et al. 2024. Production of Polyhydroxybutyrate by halotolerant Halomonas cerina YK44 using sugarcane molasses and soybean flour in tap water. International Journal of Biological Macromolecules 279(4):135358

doi: 10.1016/j.ijbiomac.2024.135358
[19]

da Costa e Silva PE, Houllou LM. 2022. Obtainment of polyhydroxyalkanoates (PHAs) from microalgae supplemented with agro-industry residue corn steep liquor. Journal of Botany Research 5(1):138−40

doi: 10.36959/771/571
[20]

Chang Y, Zhao XQ, Zhang X, Jiao Y. 2025. Corn steep liquor as an efficient bioresource for functional components production by biotransformation technology. Foods 14(13):2158

doi: 10.3390/foods14132158
[21]

Nielsen C, Rahman A, Rehman AU, Walsh MK, Miller CD. 2017. Food waste conversion to microbial polyhydroxyalkanoates. Microbial Biotechnology 10(6):1338−52

doi: 10.1111/1751-7915.12776
[22]

Winnacker M. 2019. PHA production: a sustainable alternative to conventional plastics. Macromolecular Bioscience 19(3):1800415

[23]

Chen GQ, Hajnal I, Wu H, Lv L, Ye J. 2015. Engineering biosynthesis mechanisms for diversifying polyhydroxyalkanoates. Trends in Biotechnology 33(10):565−74

doi: 10.1016/j.tibtech.2015.07.007
[24]

Gutschmann B, Bock MCE, Jahns S, Neubauer P, Brigham CJ, et al. 2021. Untargeted metabolomics analysis of Ralstonia eutropha during plant oil cultivations reveals the presence of a fucose salvage pathway. Scientific Reports 11:14267

doi: 10.1038/s41598-021-93720-9
[25]

Lu X, Wang L, Yang Z, Lu H. 2013. Strategies of polyhydroxyalkanoates modification for the medical application in neural regeneration/nerve tissue engineering. Advances in Bioscience and Biotechnology 4:731−40

doi: 10.4236/abb.2013.46097
[26]

Riedel SL, Jahns S, Koenig S, Bock MCE, Brigham CJ, et al. 2015. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats. Journal of Biotechnology 214:119−27

doi: 10.1016/j.jbiotec.2015.09.002
[27]

Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, et al. 1998. Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. Journal of Bacteriology 180:1979−87

doi: 10.1128/jb.180.8.1979-1987.1998
[28]

Xing Y, Bu LX, Wang K, Jiang JX. 2012. Pretreatment of furfural residues with alkaline peroxide to improve cellulose hydrolysis. Characterization of isolated lignin. Cellulose Chemistry and Technology 46(3−4):249−60

[29]

Hassan S, Ngo T, Ball AS. 2024. Valorisation of sugarcane bagasse for the sustainable production of polyhydroxyalkanoates. Sustainability 16(5):2200

doi: 10.3390/su16052200
[30]

Zytner P, Kumar D, Elsayed A, Mohanty A, Ramarao BV, et al. 2023. A review on polyhydroxyalkanoate (PHA) production through the use of lignocellulosic biomass. RSC Sustainability 1:2120−34

doi: 10.1039/D3SU00126A
[31]

Fabbri S, Owsianiak M, Hauschild MZ. 2023. Evaluation of sugar feedstocks for bio-based chemicals: a consequential, regionalized life cycle assessment. GCB Bioenergy 15:72−87

doi: 10.1111/gcbb.13009
[32]

Dalsasso RR, Pavan FA, Bordignon SE, de Aragão GMF, Poletto P. 2019. Polyhydroxybutyrate (PHB) production by Cupriavidus necator from sugarcane vinasse and molasses as mixed substrate. Process Biochemistry 85:12−18

doi: 10.1016/j.procbio.2019.07.007
[33]

Xu Z, Huang F. 2014. Pretreatment methods for bioethanol production. Applied Biochemistry and Biotechnology 174:43−62

doi: 10.1007/s12010-014-1015-y
[34]

Zhao X, Wen J, Chen H, Liu D. 2018. The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production. Renewable Energy 128:200−9

doi: 10.1016/j.renene.2018.05.071
[35]

Mouho OMB, Doudjo S, Yan S, Konan ATS, Yao KB, et al. 2025. Strategies to enhance polyhydroxyalkanoate production from sugarcane molasses by Cupriavidus necator 11599. Open Journal of Applied Sciences 15(3):573−96

doi: 10.4236/ojapps.2025.153037
[36]

Naheed N, Jamil N. 2014. Optimization of biodegradable plastic production on sugar cane molasses in Enterobacter sp. SEL2. Brazilian Journal of Microbiology 45(2):417−26

doi: 10.1590/s1517-83822014000200008
[37]

Kiselev EG, Demidenko AV, Zhila NO, Shishatskaya EI, Volova TG. 2022. Sugar beet molasses as a potential C-substrate for PHA production by Cupriavidus necator. Bioengineering 9(4):154

doi: 10.3390/bioengineering9040154
[38]

Tyagi P, Saxena NK, Sharma A. 2018. Production of polyhydroxyalkanoates (PHA) from a non-lignocellulosic component of sugarcane bagasse: fueling a biobased economy. Biofuels, Bioproducts and Biorefining 12(4):536−41

doi: 10.1002/bbb.1879
[39]

Oyewole OA, Abdulmalik SU, Abubakar AO, Chimbekujwo KI, Obafemi YD, et al. 2024. Production of polyhydroxyalkanoate (PHA) by Pseudomonas aeruginosa (OL405443) using agrowastes as carbon source. Cleaner Materials 11:100217

doi: 10.1016/j.clema.2024.100217
[40]

Oladzad S, Fallah N, Mahboubi A, Afsham N, Taherzadeh MJ, et al. 2024. Comparison of acid and hydrothermal pretreatments of date waste for value creation. Scientific Reports 14:18056

doi: 10.1038/s41598-024-68879-6
[41]

Salgaonkar BB, Mani K, Braganca JM. 2013. Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. Journal of Applied Microbiology 114:1347−56

doi: 10.1111/jam.12135
[42]

Dietrich K, Dumont MJ, Del Rio LF, Orsat V. 2019. Sustainable PHA production in integrated lignocellulose biorefineries. New Biotechnology 49:161−68

doi: 10.1016/j.nbt.2018.11.004
[43]

Kovalcik A, Pernicova I, Obruca S, Szotkowski M, Enev V, et al. 2020. Grape winery waste as a promising feedstock for the production of polyhydroxyalkanoates and other value-added products. Food and Bioproducts Processing 124:1−10

doi: 10.1016/j.fbp.2020.08.003
[44]

Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, et al. 2014. Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian Journal of Microbiology 54(2):151−57

doi: 10.1007/s12088-014-0457-9
[45]

Kim JS, Lee YY, Kim TH. 2016. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technology 199:42−48

doi: 10.1016/j.biortech.2015.08.085
[46]

Xu H, Li B, Mu X. 2016. Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion. Industrial & Engineering Chemistry Research 55(32):8691−705

doi: 10.1021/acs.iecr.6b01907
[47]

Raud M, Krennhuber K, Jäger A, Kikas T. 2019. Nitrogen explosive decompression pre-treatment: an alternative to steam explosion. Energy 177:175−82

doi: 10.1016/j.energy.2019.04.071
[48]

Ayeni AO, Daramola MO. 2017. Lignocellulosic biomass waste beneficiation: evaluation of oxidative and non-oxidative pretreatment methodologies of South African corn cob. Journal of Environmental Chemical Engineering 5(2):1771−79

doi: 10.1016/j.jece.2017.03.019
[49]

Zhang N, Tao P, Lu Y, Nie S. 2019. Effect of lignin on the thermal stability of cellulose nanofibrils produced from bagasse pulp. Cellulose 26:7823−35

doi: 10.1007/s10570-019-02657-w
[50]

Yu N, Tan L, Sun ZY, Nishimura H, Takei S, et al. 2018. Bioethanol from sugarcane bagasse: focused on optimum of lignin content and reduction of enzyme addition. Waste Management 76:404−13

doi: 10.1016/j.wasman.2018.03.047
[51]

Lee WS, Chua ASM, Yeoh HK, Nittami T, Ngoh GC. 2015. Strategy for the biotransformation of fermented palm oil mill effluent into biodegradable polyhydroxyalkanoates by activated sludge. Chemical Engineering Journal 269:288−97

doi: 10.1016/j.cej.2015.01.103
[52]

Moxley K, Schmidt S. 2012. Isolation of a phenol-utilizing marine bacterium from Durban Harbour (South Africa) and its preliminary characterization as Marinobacter sp. KM2. Water Science and Technology 65(5):932−39

doi: 10.2166/wst.2012.940
[53]

Thring RW, Chornet E, Overend RP. 1990. Recovery of a solvolytic lignin: effects of spent liquor/acid volume ratio, acid concentration and temperature. Biomass 23:289−305

doi: 10.1016/0144-4565(90)90038-L
[54]

Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83:1−11

doi: 10.1016/S0960-8524(01)00212-7
[55]

Duff SJB, Murray WD. 1996. Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresource Technology 55:1−33

doi: 10.1016/0960-8524(95)00122-0
[56]

Schmatz AA, Salazar-Bryam AM, Contiero J, Sant'Anna C, Brienzo M. 2021. Pseudo-lignin content decreased with hemicellulose and lignin removal, improving cellulose accessibility, and enzymatic digestibility. BioEnergy Research 14:106−21

doi: 10.1007/s12155-020-10187-8
[57]

Zhang J, Xie J, Zhang H. 2021. Sodium hydroxide catalytic ethanol pretreatment and surfactant on the enzymatic saccharification of sugarcane bagasse. Bioresource Technology 319:124171

doi: 10.1016/j.biortech.2020.124171
[58]

Taherzadeh MJ, Karimi K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences 9(9):1621−51

doi: 10.3390/ijms9091621
[59]

Ziegler-Devin I, Chrusciel L, Brosse N. 2021. Steam explosion pretreatment of lignocellulosic biomass: a mini-review of theorical and experimental approaches. Frontiers in Chemistry 9:705358

doi: 10.3389/fchem.2021.705358
[60]

Lam PS. 2011. Steam explosions of biomass to produce durable wood pellets. Thesis. University of British Columbia, Vancouver, Canada. 180 pp

[61]

Raud M, Olt J, Kikas T. 2016. N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass and Bioenergy 90:1−6

doi: 10.1016/j.biombioe.2016.03.034
[62]

Silveira MHL, Chandel AK, Vanelli BA, Sacilotto KS, Cardoso EB. 2018. Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: pilot scale study. Bioresource Technology Reports 3:138−46

doi: 10.1016/j.biteb.2018.07.011
[63]

Zhang W, You Y, Lei F, Li P, Jiang J. 2018. Acetyl-assisted autohydrolysis of sugarcane bagasse for the production of xylo-oligosaccharides without additional chemicals. Bioresource Technology 265:387−93

doi: 10.1016/j.biortech.2018.06.039
[64]

Yan F, Tian S, Du K, Wang X. 2021. Effects of steam explosion pretreatment on the extraction of xylooligosaccharide from rice husk. BioResources 16(4):6910−20

doi: 10.15376/biores.16.4.6910-6920
[65]

Wan C, Li Y. 2012. Fungal pretreatment of lignocellulosic biomass. Biotechnology Advances 30(6):1447−57

doi: 10.1016/j.biotechadv.2012.03.003
[66]

Abu-Thabit NY, Pérez-Rivero C, Uwaezuoke OJ, Ngwuluka NC. 2022. From waste to wealth: upcycling of plastic and lignocellulosic wastes to PHAs. Journal of Chemical Technology & Biotechnology 97:3217−40

doi: 10.1002/jctb.6966
[67]

Østby H, Hansen LD, Horn SJ, Eijsink VGH, Várnai A. 2020. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Journal of Industrial Microbiology & Biotechnology 47(9):623−57

doi: 10.1007/s10295-020-02301-8
[68]

González-Rojo S, Díez-Antolínez R. 2023. Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery. Bioresource Technology 386:129493

doi: 10.1016/j.biortech.2023.129493
[69]

Yuan Q, Liu S, Ma MG, Ji XX, Choi SE, et al. 2021. The kinetics studies on hydrolysis of hemicellulose. Frontiers in Chemistry 9:781291

doi: 10.3389/fchem.2021.781291
[70]

Liu P, Zheng Y, Yuan Y, Han Y, Su T, et al. 2023. Upcycling of PET oligomers from chemical recycling processes to PHA by microbial co-cultivation. Waste Management 172:51−59

doi: 10.1016/j.wasman.2023.08.048
[71]

Sahu SS, Maiti SK. 2024. A circular economy approach to valorisation of lignocellulosic biomass-biochar and bioethanol production. In Biomass Energy for Sustainable Development, eds Shah MP, Kaur P. Boca Raton: CRC Press. pp. 335−54 doi: 10.1201/9781003406501-17

[72]

Chaudhry WN, Jamil N, Ali I, Ayaz MH, Hasnain S. 2011. Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Annals of Microbiology 61:623−29

doi: 10.1007/s13213-010-0181-6
[73]

Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N. 2009. Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. Journal of Bioscience and Bioengineering 107(3):240−45

doi: 10.1016/j.jbiosc.2008.10.006
[74]

Baei MS, Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H. 2009. Poly(3-hydroxybutyrate) synthesis by Cupriavidus necator DSMZ 545 utilizing various carbon sources. World Applied Sciences Journal 7:157−61

[75]

Sen KY, Hussin MH, Baidurah S. 2019. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus necator from various pretreated molasses as carbon source. Biocatalysis and Agricultural Biotechnology 17:51−59

doi: 10.1016/j.bcab.2018.11.006
[76]

Albuquerque MGE, Eiroa M, Torres C, Nunes BR, Reis MAM. 2007. Strategies for the development of a side stream process for polyhydroxyalkanoate (PHA) production from sugar cane molasses. Journal of Biotechnology 130:411−21

doi: 10.1016/j.jbiotec.2007.05.011
[77]

Gomaa EZ. 2014. Production of Polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli grown on cane molasses fortified with ethanol. Brazilian Archives of Biology and Technology 57:145−54

doi: 10.1590/S1516-89132014000100020
[78]

Nair AM, Annamalai K, Kannan SK, Kuppusamy S. 2014. Utilization of sugarcane molasses for the production of polyhydroxyalkanoates using Bacillus subtilis. Malaya Journal of Biosciences 1(1):24−30

[79]

Gomez JGC, Méndez BS, Nikel PI, Pettinari MJ, Prieto MA, et al. 2012. Making green polymers even greener: towards sustainable production of polyhydroxyalkanoates from agroindustrial by-products. In Advances in Applied Biotechnology, ed. Petre M. UK: IntechOpen. pp. 41–62 doi: 10.5772/31847

[80]

Park SJ, Jang YA, Noh W, Oh YH, Lee H, et al. 2015. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnology and Bioengineering 112:638−43

doi: 10.1002/bit.25469
[81]

Jo SY, Sohn YJ, Park SY, Son J, Yoo JI, et al. 2021. Biosynthesis of polyhydroxyalkanoates from sugarcane molasses by recombinant Ralstonia eutropha strains. Korean Journal of Chemical Engineering 38:1452−59

doi: 10.1007/s11814-021-0783-7
[82]

Akaraonye E, Moreno C, Knowles JC, Keshavarz T, Roy I. 2012. Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnology Journal 7:293−303

doi: 10.1002/biot.201100122
[83]

Jiang Y, Song X, Gong L, Li P, Dai C, et al. 2008. High poly(β-hydroxybutyrate) production by Pseudomonas fluorescens A2a5 from inexpensive substrates. Enzyme and Microbial Technology 42(2):167−72

doi: 10.1016/j.enzmictec.2007.09.003
[84]

Zhang H, Obias V, Gonyer K, Dennis D. 1994. Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Applied and Environmental Microbiology 60:1198−205

doi: 10.1128/aem.60.4.1198-1205.1994
[85]

Bhattacharyya A, Pramanik A, Maji SK, Haldar S, Mukhopadhyay UK, et al. 2012. Utilization of vinasse for production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei. AMB Express 2:34

doi: 10.1186/2191-0855-2-34
[86]

Pramanik A, Mitra A, Arumugam M, Bhattacharyya A, Sadhukhan S, et al. 2012. Utilization of vinasse for the production of polyhydroxybutyrate by Haloarcula marismortui. Folia Microbiologica 57:71−79

doi: 10.1007/s12223-011-0092-3
[87]

Gouda MK, Swellam AE, Omar SH. 2001. Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen sources. Microbiology Research 156:201−7

doi: 10.1078/0944-5013-00104
[88]

Page WJ. 1992. Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiology Reviews 9:149−57

doi: 10.1111/j.1574-6968.1992.tb05832.x
[89]

Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay UK, et al. 2014. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18:463−70

doi: 10.1007/s00792-013-0622-9
[90]

Lopes MSG, Gomez JGC, Taciro MK, Mendonça TT, Silva LF. 2014. Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by Burkholderia sp. Journal of Industrial Microbiology & Biotechnology 41:1353−63

doi: 10.1007/s10295-014-1485-5
[91]

Favaro L, Marina B, Rodriguez JEG, Morelli A, Ibraheem I, et al. 2019. Bacterial production of PHAs from lipid rich by-products. Applied Food Biotechnology 6:45−52

doi: 10.22037/afb.v6i1.22246
[92]

Yu J, Stahl H. 2008. Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresource Technology 99(17):8042−48

doi: 10.1016/j.biortech.2008.03.071
[93]

Bengtsson S, Pisco AR, Reis MAM, Lemos PC. 2010. Production of polyhydroxyalkanoates from fermented sugar cane molasses by a mixed culture enriched in glycogen accumulating organisms. Journal of Biotechnology 145:253−63

doi: 10.1016/j.jbiotec.2009.11.016
[94]

Chaijamrus S, Udpuay N. 2008. Production and characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agricultural Engineering International: CIGR Journal 10:1−12

[95]

Shivakumar S. 2012. Polyhydroxybutyrate (PHB) production using agro-industrial residue as substrate by Bacillus thuringiensis IAM 12077. International Journal of ChemTech Research 4(3):1158−62

[96]

Tripathi AD, Yadav A, Jha A, Srivastava SK. 2012. Utilizing of sugar refinery waste (cane molasses) for production of bio-plastic under submerged fermentation process. Journal of Polymers and the Environment 20:446−53

doi: 10.1007/s10924-011-0394-1
[97]

Castilla-Marroquí JD, Pacheco N, Herrera-Corredor JA, Hernández-Rosas F, Jiménez-Morales K, et al. 2024. Polyhydroxyalkanoates production by Bacillus thuringiensis HA1 using sugarcane molasses as carbon source. Revista Mexicana de Ingeniería Química 23:Bio24352

doi: 10.24275/rmiq/Bio24352
[98]

Razzaq S, Shahid S, Farooq R, Noreen S, Perveen S, et al. 2024. Sustainable Bioconversion of agricultural waste substrates into poly(3-Hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428. Biomass Conversion and Biorefinery 14:9429−39

doi: 10.1007/s13399-022-03194-6
[99]

Oehmen A, Pinto FV, Silva V, Albuquerque MGE, Reis MAM. 2014. The impact of pH control on the volumetric productivity of mixed culture PHA production from fermented molasses. Engineering in Life Sciences 14:143−52

doi: 10.1002/elsc.201200220
[100]

Beaulieu M, Beaulieu Y, Melinard J, Pandian S, Goulet J. 1995. Influence of ammonium salts and cane molasses on growth of Alcaligenes eutrophus and production of polyhydroxybutyrate. Applied and Environmental Microbiology 61:165−69

doi: 10.1128/aem.61.1.165-169.1995
[101]

Desouky SES, Ali Abdel-Rahman M, Azab MS, Esmael ME. 2017. Batch and fed batch production of polyhydroxyalkanoates from sugarcane molasses by Bacillus flexus Azu-A2. Journal of Innovations in Pharmaceutical and Biological Sciences 4(3):55−66

[102]

Misra V, Srivastava S, Mall AK. 2022. Sugar beet cultivation, management and processing. Singapore: Springer. xlvi, 1005 pp doi: 10.1007/978-981-19-2730-0

[103]

Wang B, Sharma-Shivappa RR, Olson JW, Khan SA. 2013. Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugarbeet juice. Industrial Crops and Products 43:802−11

doi: 10.1016/j.indcrop.2012.08.011
[104]

Sarafidou M, Vittou O, Psaki O, Filippi K, Tsouko E, et al. 2024. Evaluation of alternative sugar beet pulp refining strategies for efficient pectin extraction and poly(3-hydroxybutyrate) production. Biochemical Engineering Journal 208:109368

doi: 10.1016/j.bej.2024.109368
[105]

Medjeber N, Abbouni B, Menasria T, Beddal A, Cherif N. 2015. Screening and production of polyhydroxyalcanoates by Bacillus megaterium by the using cane and beet molasses as carbon sources. Der Pharmacia Lettre 7(6):102−9

[106]

Zohri AE, Kamal El-Dean A, Abuo-Dobara M, Ali M, Bakr M, et al. 2019. Production of polyhydroxyalkanoate by local strain of Bacillus megaterium AUMC b 272 utilizing sugar beet waste water and molasses. Egyptian Sugar Journal 13:45−70

doi: 10.21608/esugj.2019.219350
[107]

Chen GQ, Page WJ. 1994. The effect of substrate on the molecular weight of poly-β-hydroxybutyrate produced by Azotobacter vinelandii UWD. Biotechnology Letters 16:155−60

doi: 10.1007/BF01021663
[108]

Kurt-Kızıldoğan A, Türe E, Okay S, Otur Ç. 2023. Improved production of poly(3-hydroxybutyrate) by extremely halophilic archaeon Haloarcula sp. TG1 by utilization of rCKT3eng-treated sugar beet pulp. Biomass Conversion and Biorefinery 13:10911−21

doi: 10.1007/s13399-021-02011-w
[109]

Kacanski M, Knoll L, Nussbaumer M, Neureiter M, Drosg B. 2023. Anaerobic acidification of pressed sugar beet pulp for mcl-polyhydroxyalkanoates fermentation. Process Biochemistry 131:235−43

doi: 10.1016/j.procbio.2023.06.019
[110]

Zhou K, Yu J, Ma Y, Cai L, Zheng L, et al. 2022. Corn steep liquor: green biological resources for bioindustry. Applied Biochemistry and Biotechnology 194:3280−95

doi: 10.1007/s12010-022-03904-w
[111]

Kim S, Dale B. 2005. Life cycle assessment study of biopolymers (polyhydroxyalkanoates) - derived from No-tilled corn (11 pp). The International Journal of Life Cycle Assessment 10:200−10

doi: 10.1065/lca2004.08.171
[112]

de Mello AFM, de Souza Vandenberghe LP, Machado CMB, Valladares-Diestra KK, de Carvalho JC, et al. 2023. Polyhydroxybutyrate production by Cupriavidus necator in a corn biorefinery concept. Bioresource Technology 370:128537

doi: 10.1016/j.biortech.2022.128537
[113]

Fonseca GG, Antonio RV. 2006. Polyhydroxyalkanoates production by recombinant Escherichia coli using low cost substrate. American Journal of Food Technology 2:12−20

doi: 10.3923/ajft.2007.12.20
[114]

Tian L, Li H, Song X, Ma L, Li ZJ. 2022. Production of polyhydroxyalkanoates by a novel strain of Photobacterium using soybean oil and corn starch. Journal of Environmental Chemical Engineering 10:108342

doi: 10.1016/j.jece.2022.108342
[115]

Vijayendra SVN, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, et al. 2007. Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian Journal of Microbiology 47:170−75

doi: 10.1007/s12088-007-0033-7
[116]

Stoica I, Petrovici AR, Silion M, Varganici CD, Dinica RO, et al. 2018. Corn cob hydrolyzates used for microbial biosynthesis of polyhydroxybutyrate. Cellulose Chemistry and Technology 52:65−67

[117]

Patel SS. 2014. Production of Polyhydroxybutyrate using agro-industrial waste by Psuedomonas aeruginosa. International Journal of Innovation of Scientific Research 3:107−10

[118]

Huang TY, Duan KJ, Huang SY, Chen CW. 2006. Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. Journal of Industrial Microbiology and Biotechnology 33:701−6

doi: 10.1007/s10295-006-0098-z
[119]

Sawant SS, Salunke BK, Kim BS. 2015. Degradation of corn stover by fungal cellulase cocktail for production of polyhydroxyalkanoates by moderate halophile Paracoccus sp. LL1. Bioresource Technology 194:247−55

doi: 10.1016/j.biortech.2015.07.019
[120]

Odeniyi OA, Adeola OJ. 2017. Production and characterization of polyhydroxyalkanoic acid from Bacillus thuringiensis using different carbon substrates. International Journal of Biological Macromolecules 104:407−13

doi: 10.1016/j.ijbiomac.2017.06.041
[121]

Chanprateep S. 2010. Current trends in biodegradable polyhydroxyalkanoates. Journal of Bioscience and Bioengineering 110:621−32

doi: 10.1016/j.jbiosc.2010.07.014
[122]

Gerngross TU. 1999. Can biotechnology move us toward a sustainable society? Nature Biotechnology 17:541−44

doi: 10.1038/9843
[123]

Rebocho AT, Pereira JR, Freitas F, Neves L, Alves VD, et al. 2019. Production of medium-chain length polyhydroxyalkanoates by Pseudomonas citronellolis grown in apple pulp waste. Applied Food Biotechnology 6:71−82

doi: 10.22037/afb.v6i1.21793
[124]

Rebocho AT, Pereira JR, Neves LA, Alves VD, Sevrin C, et al. 2020. Preparation and characterization of films based on a natural P(3HB)/mcl-PHA blend obtained through the co-culture of Cupriavidus necator and Pseudomonas citronellolis in apple pulp waste. Bioengineering 7:34

doi: 10.3390/bioengineering7020034
[125]

Maity S, Das S, Mohapatra S, Tripathi AD, Akthar J, et al. 2020. Growth associated polyhydroxybutyrate production by the novel Zobellellae tiwanensis strain DD5 from banana peels under submerged fermentation. International Journal of Biological Macromolecules 153:461−69

doi: 10.1016/j.ijbiomac.2020.03.004
[126]

Song JH, Jeon CO, Choi MH, Yoon SC, Park W. 2008. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. Journal of Microbiology and Biotechnology 18(8):1408−15

[127]

Sathesh Prabu C, Murugesan AG. 2010. Effective utilization and management of coir industrial waste for the production of poly-β-hydroxybutyrate (PHB) using the bacterium Azotobacter beijerinickii. International Journal of Environmental Research 4(3):519−24

[128]

Lagunes FG. 2016. Synthesis of polyhydroxyalkanoates using orange juicing waste as feedstock. Thesis. The University of Manchester, UK. pp. 158

[129]

Ramadas NV, Soccol CR, Pandey A. 2010. A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. Applied Biochemistry and Biotechnology 162:996−1007

doi: 10.1007/s12010-009-8807-5
[130]

Zhang Y, Sun W, Wang H, Geng A. 2013. Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresource Technology 147:307−14

doi: 10.1016/j.biortech.2013.08.029
[131]

Follonier S, Goyder MS, Silvestri AC, Crelier S, Kalman F, et al. 2014. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. International Journal of Biological Macromolecules 71:42−52

doi: 10.1016/j.ijbiomac.2014.05.061
[132]

Umesh M, Sankar SA, Thazeem B. 2021. Fruit waste as sustainable resources for polyhydroxyalkanoate (PHA) production. In Bioplastics for Sustainable Development, eds Kuddus M, Roohi. Singapore: Springer. pp. 205−29 doi: 10.1007/978-981-16-1823-9_7

[133]

Qureshi AS, Khushk I, Naqvi SR, Simiar AA, Ali CH, et al. 2017. Fruit waste to energy through open fermentation. Energy Procedia 142:904−9

doi: 10.1016/j.egypro.2017.12.145
[134]

Choi IS, Lee YG, Khanal SK, Park BJ, Bae HJ. 2015. A low-energy, cost-effective approach to fruit and Citrus peel waste processing for bioethanol production. Applied Energy 140:65−74

doi: 10.1016/j.apenergy.2014.11.070
[135]

Longo A, Fanelli F, Villano M, Montemurro M, Rizzello CG. 2024. Bioplastic production from agri-food waste through the use of Haloferax mediterranei: a comprehensive initial overview. Microorganisms 12:1038

doi: 10.3390/microorganisms12061038
[136]

Atarés L, Chiralt A, González-Martínez C, Vargas M. 2024. Production of polyhydroxyalkanoates for biodegradable food packaging applications using Haloferax mediterranei and agrifood wastes. Foods 13(6):950

doi: 10.3390/foods13060950
[137]

Preethi K, Lakshmi M, Umesh M, Priynaka K, Thazeem B. 2017. Fruit peels: a potential substrate for acetic acid using Acetobacter aceti. International Journal of Applied Research 3(4):286−91

[138]

Umesh M, Basheer T. 2018. Microbe mediated bioconversion of fruit waste into value added products: microbes in fruit waste management. In Research Anthology on Food Waste Reduction and Alternative Diets for Food and Nutrition Security, eds Pathak VM, Navneet. 1st Edition. PA: IGI Global Hershey. pp. 57–78 doi: 10.4018/978-1-7998-5354-1.ch031

[139]

Castilho LR, Mitchell DA, Freire DMG. 2009. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresource Technology 100:5996−6009

doi: 10.1016/j.biortech.2009.03.088
[140]

Suwannasing W, Imai T, Kaewkannetra P. 2015. Potential utilization of pineapple waste streams for polyhydroxyalkanoates (PHAs) production via batch fermentation. Journal of Water and Environment Technology 13:335−47

doi: 10.2965/jwet.2015.335
[141]

Zahari MAKM, Abdullah SSS, Roslan AM, Ariffin H, Shirai Y, et al. 2014. Efficient utilization of oil palm frond for bio-based products and biorefinery. Journal of Cleaner Production 65:252−60

doi: 10.1016/j.jclepro.2013.10.007
[142]

Hafid HS, Nor'Aini AR, Mokhtar MN, Talib AT, Baharuddin AS, et al. 2017. Over production of fermentable sugar for bioethanol production from carbohydrate-rich Malaysian food waste via sequential acid-enzymatic hydrolysis pretreatment. Waste Management 67:95−105

doi: 10.1016/j.wasman.2017.05.017
[143]

Favaretto DPC, Rempel A, Lanzini JR, Silva ACM, Lazzari T, et al. 2023. Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World Journal of Microbiology and Biotechnology 39:144

doi: 10.1007/s11274-023-03588-2
[144]

Bhat R. 2021. Valorization of agri-food wastes and by-products: recent trends, innovations and sustainability challenges. Amsterdam: Elsevier. doi: 10.1016/C2020-0-01248-X

[145]

Yezza A, Halasz A, Levadoux W, Hawari J. 2007. Production of poly-β-hydroxybutyrate (PHB) by Alcaligenes latus from maple sap. Applied Microbiology and Biotechnology 77:269−74

doi: 10.1007/s00253-007-1158-7
[146]

Lokesh BE, Hamid ZAA, Arai T, Kosugi A, Murata Y, et al. 2012. Potential of oil palm trunk sap as a novel inexpensive renewable carbon feedstock for polyhydroxyalkanoate biosynthesis and as a bacterial growth medium. CLEAN – Soil, Air, Water 40(3):310−17

doi: 10.1002/clen.201000598
[147]

Talebian-Kiakalaieh A, Amin NAS, Mazaheri H. 2013. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 104:683−710

doi: 10.1016/j.apenergy.2012.11.061
[148]

Gundlapalli M, Ganesan S. 2025. Polyhydroxyalkanoates (PHAs): key challenges in production and sustainable strategies for cost reduction within a circular economy framework. Results in Engineering 26:105345

doi: 10.1016/j.rineng.2025.105345
[149]

Zhou W, Bergsma S, Colpa DI, Euverink GW, Krooneman J. 2023. Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. Journal of Environmental Management 341:118033

doi: 10.1016/j.jenvman.2023.118033
[150]

Sabapathy PC, Devaraj S, Meixner K, Anburajan P, Kathirvel P, et al. 2020. Recent developments in Polyhydroxyalkanoates (PHAs) production –a review. Bioresource Technology 306:123132

doi: 10.1016/j.biortech.2020.123132
[151]

Koller M, Maršálek L, de Sousa Dias MM, Braunegg G. 2017. Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnology 37:24−38

doi: 10.1016/j.nbt.2016.05.001
[152]

Koller M. 2018. A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters. Fermentation 4:30

doi: 10.3390/fermentation4020030
[153]

Kourmentza C, Koutra E, Venetsaneas N, Kornaros M. 2017. Integrated biorefinery approach for the valorization of olive mill waste streams towards sustainable biofuels and bio-based products. In Microbial Applications, eds Kalia V, Kumar P. Vol. 1. Cham: Springer. pp. 211–38 doi: 10.1007/978-3-319-52666-9_10

[154]

Acharjee SA, Bharali P, Gogoi B, Sorhie V, Walling B, et al. 2023. PHA-based bioplastic: a potential alternative to address microplastic pollution. Water, Air, & Soil Pollution 234:21

doi: 10.1007/s11270-022-06029-2
[155]

Dietrich K, Dumont MJ, Del Rio LF, Orsat V. 2017. Producing PHAs in the bioeconomy—towards a sustainable bioplastic. Sustainable Production and Consumption 9:58−70

doi: 10.1016/j.spc.2016.09.001
[156]

Vidal F, van der Marel ER, Kerr RWF, McElroy C, Schroeder N, et al. 2024. Designing a circular carbon and plastics economy for a sustainable future. Nature 626:45−57

doi: 10.1038/s41586-023-06939-z
[157]

Iles A, Martin AN. 2013. Expanding bioplastics production: sustainable business innovation in the chemical industry. Journal of Cleaner Production 45:38−49

doi: 10.1016/j.jclepro.2012.05.008
[158]

Jayalath SU, de Alwis AP. 2025. PHA, the greenest plastic so far: advancing microbial synthesis, recovery, and sustainable applications for circularity. ACS Omega 10(30):32564−86

doi: 10.1021/acsomega.5c00684
[159]

Marciniak P, Możejko-Ciesielska J. 2021. What is new in the field of industrial wastes conversion into polyhydroxyalkanoates by bacteria? Polymers 13:1731

doi: 10.3390/polym13111731
[160]

Gomes Gradíssimo D, Pereira Xavier L, Valadares Santos A. 2020. Cyanobacterial polyhydroxyalkanoates: a sustainable alternative in circular economy. Molecules 25:4331

doi: 10.3390/molecules25184331
[161]

Singh SP, Jawaid M, Chandrasekar M, Senthilkumar K, Yadav B, et al. 2021. Sugarcane wastes into commercial products: processing methods, production optimization and challenges. Journal of Cleaner Production 328:129453

doi: 10.1016/j.jclepro.2021.129453
[162]

Khatami K, Perez-Zabaleta M, Owusu-Agyeman I, Cetecioglu Z. 2021. Waste to bioplastics: how close are we to sustainable polyhydroxyalkanoates production? Waste Management 119:374−88

doi: 10.1016/j.wasman.2020.10.008
[163]

Mohandessi M, Bandara K, Wan C. 2024. Green technologies for recovery of polyhydroxyalkanoates: opportunities and perspectives. Advances in Bioenergy 9:335−81

doi: 10.1016/bs.aibe.2024.03.003
[164]

Shen MY, Souvannasouk V, Saipa S, Chu CY, Tantranont N, et al. 2023. PHA Production from molasses using mixed microbial cultures: techno-economic feasibility analysis. Research Square:Preprint

doi: 10.21203/rs.3.rs-3126814/v1
[165]

Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, et al. 2019. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Review of Medical Devices 16(6):467−82

doi: 10.1080/17434440.2019.1615439
[166]

Harrison STL, van Coller C, Smart M, Broadhurst J, Kotsiopoulos T, et al. 2023. Integrating ARD prevention and mine waste minimisation: soil fabrication from coal waste. Water Research Commission Report No. 2844/1/23. 140 pp

[167]

Lu J, Tappel RC, Nomura CT. 2009. Mini-review: biosynthesis of poly(hydroxyalkanoates). Polymer Reviews 49:226−48

doi: 10.1080/15583720903048243
[168]

Berson RE, Young JS, Kamer SN, Hanley TR. 2005. Detoxification of actual pretreated corn stover hydrolysate using activated carbon powder. Applied Biochemistry and Biotechnology 124:923−34

doi: 10.1385/ABAB:124:1-3:0923
[169]

Jankowska E, Duber A, Chwialkowska J, Stodolny M, Oleskowicz-Popiel P. 2018. Conversion of organic waste into volatile fatty acids – The influence of process operating parameters. Chemical Engineering Journal 345:395−403

doi: 10.1016/j.cej.2018.03.180
[170]

Zhou M, Yan B, Wong JWC, Zhang Y. 2018. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresource Technology 248:68−78

doi: 10.1016/j.biortech.2017.06.121
[171]

Koller M, Mukherjee A. 2022. Polyhydroxyalkanoates (PHAs) – production, properties and biodegradable. In Biodegradable polymers in the circular plastics economy, eds Dusselier M, Lange JP. US: Wiley. doi: 10.1002/9783527827589.ch6

[172]

Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, et al. 2016. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. International Journal of Biological Macromolecules 89:161−74

doi: 10.1016/j.ijbiomac.2016.04.069
[173]

Camargo FA, Innocentini-Mei LH, Lemes AP, Moraes SG, Durán N. 2012. Processing and characterization of composites of poly(3-hydroxybutyrate-co-hydroxyvalerate) and lignin from sugar cane bagasse. Journal of Composite Materials 46:417−25

doi: 10.1177/0021998311418389
[174]

Sabapathy PC, Devaraj S, Anburajan P, Parvez A, Kathirvel P, et al. 2023. Active polyhydroxybutyrate (PHB)/sugarcane bagasse fiber-based anti-microbial green composite: material characterization and degradation studies. Applied Nanoscience 13:1187−99

doi: 10.1007/s13204-021-01972-8
[175]

Moshood TD, Nawanir G, Mahmud F, Mohamad F, Ahmad MH, et al. 2022. Green product innovation: a means towards achieving global sustainable product within biodegradable plastic industry. Journal of Cleaner Production 363:132506

doi: 10.1016/j.jclepro.2022.132506
[176]

Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suárez LEC, et al. 2014. Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microbial Cell Factories 13:114

doi: 10.1186/s12934-014-0114-3
[177]

Babu PK, Maruthi Y, Pratao SV, Sudhakar K, Sadiku R, et al. 2013. Development and characterisation of polycaprolactone (pcl)/poly ((r)-3-hydroxybutyric acid) (PHB) blend microspheres for tamoxifen drug release studies. International Journal of Pharmacy and Pharmaceutical Sciences 7(9):95−100

[178]

Bioextrax. 2014. Cost-competitive and sustainable replacements for a circular future. https://bioextrax.com/ (Accessed on September 20, 2025)

[179]

Sintim HY, Bandopadhyay S, English ME, Bary A, Liquet y González JE, et al. 2021. Four years of continuous use of soil-biodegradable plastic mulch: impact on soil and groundwater quality. Geoderma 381:114665

doi: 10.1016/j.geoderma.2020.114665
[180]

Tocchetto RS, Benson RS, Dever M. 2001. Outdoor weathering evaluation of carbon-black-filled, biodegradable copolyester as substitute for traditionally used, carbon-black-filled, nonbiodegradable, high-density polyethylene mulch films. Journal of Polymers and the Environment 9:57−62

doi: 10.1023/A:1020248705596
[181]

Kasirajan S, Ngouajio M. 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 32:501−29

doi: 10.1007/s13593-011-0068-3
[182]

Rekhi P, Goswami M, Ramakrishna S, Debnath M. 2022. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Critical Reviews in Biotechnology 42:668−92

doi: 10.1080/07388551.2021.1960265
[183]

El-malek FA, Farag A, Omar S, Khairy H. 2020. Polyhydroxyalkanoates (PHA) from Halomonas pacifica ASL10 and Halomonas salifodiane ASL11 isolated from Mariout salt lakes. International Journal of Biological Macromolecules 161:1318−28

doi: 10.1016/j.ijbiomac.2020.07.258
[184]

Oviyya KR, Nithyalkshmi B. 2024. Polyhroxyalkanoates (PHAs): a comprehensive review of life cycle assessment, environmental impacts, and satiable development. International Journal of Research Publication and Reviews 5(10):3061−67

[185]

Koch M, Spierling S, Venkatachalam V, Endres HJ, Owsianiak M, et al. 2023. Comparative assessment of environmental impacts of 1st generation (corn feedstock) and 3rd generation (carbon dioxide feedstock) PHA production pathways using life cycle assessment. Science of The Total Environment 863:160991

doi: 10.1016/j.scitotenv.2022.160991
[186]

Lorini L, Martinelli A, Capuani G, Frison N, Reis M, et al. 2021. Characterization of polyhydroxyalkanoates produced at pilot scale from different organic wastes. Frontiers in Bioengineering and Biotechnology 9:628719

doi: 10.3389/fbioe.2021.628719
[187]

Cywar RM, Rorrer NA, Hoyt CB, Beckham GT, Chen EYX. 2022. Bio-based polymers with performance-advantaged properties. Nature Reviews Materials 7:83−103

doi: 10.1038/s41578-021-00363-3
[188]

Burgess SK, Leisen JE, Kraftschik BE, Mubarak CR, Kriegel RM, et al. 2014. Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate). Macromolecules 47(4):1383−91

doi: 10.1021/ma5000199
[189]

Eerhart AJJE, Faaij APC, Patel MK. 2012. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance. Energy & Environmental Science 5:6407−22

doi: 10.1039/C2EE02480B
[190]

Knoop RJI, Vogelzang W, van Haveren J, van Es DS. 2013. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. Journal of Polymer Science Part A: Polymer Chemistry 51:4191−99

doi: 10.1002/pola.26833
[191]

Galbis JA, de Gracia García-Martín M, de Paz MV, Galbis E. 2016. Synthetic polymers from sugar-based monomers. Chemical Reviews 116(3):1600−36

doi: 10.1021/acs.chemrev.5b00242
[192]

Gregory GL, López-Vidal EM, Buchard A. 2017. Polymers from sugars: cyclic monomer synthesis, ring-opening polymerisation, material properties and applications. Chemical Communications 53:2198−217

doi: 10.1039/C6CC09578J
[193]

Guo M, Wang Y, Li Z, Xu J, Chen Q, et al. 2024. Influence of polyol impurities on the transesterification kinetics, molecular structures and properties of isosorbide polycarbonate. Polymer Chemistry 15(15):4204−20

doi: 10.1039/D4PY00840E
[194]

Manker LP, Hedou MA, Broggi C, Jones MJ, Kortsen K, et al. 2024. Performance polyamides built on a sustainable carbohydrate core. Nature Sustainability 7:640−51

doi: 10.1038/s41893-024-01298-7
[195]

Ecole Polytechnique Fédérale de Lausanne. 2024. Revolutionizing plastics: How sugar based polyamides could save our planet. https://scitechdaily.com/revolutionizing-plastics-how-sugar-based-polyamides-could-save-our-planet/

[196]

Sanders JH, Cunniffe J, Carrejo E, Burke C, Reynolds AM, et al. 2024. Biobased polyethylene furanoate: production processes, sustainability, and techno-economics. Advanced Sustainable Systems 8(11):2400074

doi: 10.1002/adsu.202400074
[197]

Desai Y, Jariwala S, Gupta RK. 2023. Bio-based polyurethanes and their applications. Polyurethanes: Preparation, Properties, and Applications, ed. Gupta RK. Volume 2. US: American Chemical Society. pp. 1−14 doi: 10.1021/bk-2023-1453.ch001

[198]

Stubbs CJ, Worch JC, Prydderch H, Wang Z, Mathers RT, et al. 2022. Sugar-based polymers with stereochemistry-dependent degradability and mechanical properties. Journal of the American Chemical Society 144:1243−50

doi: 10.1021/jacs.1c10278
[199]

Shibata M, Ishigami N, Shibita A. 2017. Synthesis of sugar alcohol-derived water-soluble polyamines by the thiol-ene reaction and their utilization as hardeners of water-soluble bio-based epoxy resins. Reactive and Functional Polymers 118:35−41

doi: 10.1016/j.reactfunctpolym.2017.07.003
[200]

Marotta A, Ambrogi V, Cerruti P, Mija A. 2018. Green approaches in the synthesis of furan-based diepoxy monomers. RSC Advances 8(29):16330−35

doi: 10.1039/C8RA02739K
[201]

Gonçalves FAMM, Santos M, Cernadas T, Ferreira P, Alves P. 2022. Advances in the development of biobased epoxy resins: insight into more sustainable materials and future applications. International Materials Reviews 67(2):119−49

doi: 10.1080/09506608.2021.1915936
[202]

Capretti M, Giammaria V, Santulli C, Boria S, Del Bianco G. 2023. Use of bio-epoxies and their effect on the performance of polymer composites: a critical review. Polymers 15(24):4733

doi: 10.3390/polym15244733
[203]

Eroglu MS, Oner ET, Mutlu EC, Bostan MS. 2017. Sugar based biopolymers in nanomedicine; new emerging era for cancer imaging and therapy. Current Topics in Medicinal Chemistry 17:1507−20

doi: 10.2174/1568026616666161222101703
[204]

Wang J, Wang D, Zhang Y, Dong J. 2021. Synthesis and biopharmaceutical applications of sugar-based polymers: new advances and future prospects. ACS Biomaterials Science & Engineering 7(3):963−82

doi: 10.1021/acsbiomaterials.0c01710
[205]

Wroblewska A, Zych A, Thiyagarajan S, Dudenko D, van Es D, et al. 2015. Towards sugar-derived polyamides as environmentally friendly materials. Polymer Chemistry 6(22):4133−43

doi: 10.1039/C5PY00521C
[206]

Bu SH, Cho W, Lee C, Ham G, Yang B, et al. 2024. Mechanochemical engineering and supramolecular reconstruction of MoS2 nanosheets with C60-γCD complexes for enhanced photocatalytic and piezoelectric performances. Chemical Engineering Journal 502:157688

doi: 10.1016/j.cej.2024.157688
[207]

Gyeonbuk D. 2025. Sugar derived catalyst boosts plastic recycling and hydrogen production. https://techxplore.com/news/2025-02-sugar-derived-catalyst-boosts-plastic.html

[208]

Wang H, Xu F, Zhang Z, Feng M, Jiang M, et al. 2023. Bio-based polycarbonates: progress and prospects. RSC Sustainability 1:2162−79

doi: 10.1039/d3su00248a
[209]

Vicente D, Proença DN, Morais PV. 2023. The role of bacterial polyhydroalkanoate (PHA) in a sustainable future: a review on the biological diversity. International Journal of Environmental Research and Public Health 20(4):2959

doi: 10.3390/ijerph20042959
[210]

Werker A, Lorini L, Villano M, Valentino F, Majone M. 2022. Modelling mixed microbial culture polyhydroxyalkanoate accumulation bioprocess towards novel methods for polymer production using dilute volatile fatty acid rich feedstocks. Bioengineering 9:125

doi: 10.3390/bioengineering9030125
[211]

Emaimo AJ, Olkhov AA, Iordanskii AL, Vetcher AA. 2022. Polyhydroxyalkanoates composites and blends: improved properties and new applications. Journal of Composites Science 6(7):206

doi: 10.3390/jcs6070206
[212]

Kumar R, Verma A, Shome A, Sinha R, Sinha S, et al. 2021. Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 13(17):9963

doi: 10.3390/su13179963