[1]

BP. 2022. Statistical review of world energy. www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html (Accessed on September 28, 2023)

[2]

International Energy Agency (IEA). 2025. Global energy review 2025. www.iea.org/reports/global-energy-review-2025 (Accessed on August 19, 2025)

[3]

Smil V. 2015. Natural Gas: Fuel for the 21st Century. Chichester, West Sussex: John Wiley and Sons, Inc. 264 pp

[4]

Mokhatab S, Mak JY, Valappil JV, Wood DA. 2014. Handbook of liquefied natural gas. Amsterdam: Gulf Professional Publishing. 589 pp doi: 10.1016/C2011-0-07476-8

[5]

Kanbur BB, Xiang L, Dubey S, Choo FH, Duan F. 2017. Cold utilization systems of LNG: a review. Renewable and Sustainable Energy Reviews 79:1171−1188

doi: 10.1016/j.rser.2017.05.161
[6]

Mokhatab S, Poe WA, Speight JG. 2006. Handbook of natural gas transmission and processing. Burlington: Gulf Professional Publishing. 636 pp doi: 10.1016/C2013-0-15625-5

[7]

Lim W, Choi K, Moon I. 2013. Current status and perspectives of liquefied natural gas (LNG) plant design. Industrial & Engineering Chemistry Research 52(9):3065−3088

doi: 10.1021/ie302877g
[8]

Kikkawa Y, Nakamura M, Sugiyama S. 1997. Development of liquefaction process for natural gas. Journal of Chemical Engineering of Japan 30(4):625−630

doi: 10.1252/jcej.30.625
[9]

Lee S, Van Duc Long N, Lee M. 2012. Design and optimization of natural gas liquefaction and recovery processes for offshore floating liquefied natural gas plants. Industrial & Engineering Chemistry Research 51(30):10021−10030

doi: 10.1021/ie2029283
[10]

Zhang L, Tang Q. 2012. Comparisons of different power generation processes by LNG cold energy. AASRI Procedia 2:31−38

doi: 10.1016/j.aasri.2012.09.010
[11]

Yu G, Jia S, Dai B. 2018. Review on recent liquefied natural gas cold energy utilization in power generation cycles. Advances in Geo-Energy Research 2(1):86−102

doi: 10.26804/ager.2018.01.08
[12]

Srinivasan R, Singh SP, Deshpande D, Saripalli SD, Venkataramanan VS, et al. 2024. Liquefied natural gas (LNG) supply chains: recent advances and future opportunities. Industrial & Engineering Chemistry Research 63(15):6481−6503

doi: 10.1021/acs.iecr.3c04638
[13]

He T, Chong ZR, Zheng J, Ju Y, Linga P. 2019. LNG cold energy utilization: prospects and challenges. Energy 170:557−568

doi: 10.1016/j.energy.2018.12.170
[14]

Noor Akashah MH, Mohammad Rozali NE, Mahadzir S, Liew PY. 2023. Utilization of cold energy from LNG regasification process: a review of current trends. Processes 11(2):517

doi: 10.3390/pr11020517
[15]

Zonfrilli M, Facchino M, Serinelli R, Chesti M, De Falco M, et al. 2023. Thermodynamic analysis of cold energy recovery from LNG regasification. Journal of Cleaner Production 420:138443

doi: 10.1016/j.jclepro.2023.138443
[16]

Gas Processors Suppliers Association (GPSA). 2012. Engineering data book, SI version. Tulsa, Okla: Gas Processors Suppliers Association. 908 pp

[17]

GIIGNL. 2021. The LNG industry: GIIGNL annual report. Report. https://giignl.org/wp-content/uploads/2021/11/GIIGNL_Annual_Report_November2021.pdf (Accessed on October 27, 2022)

[18]

Gary JH, Handwerk GE, Kaiser MJ, Klerk A. 2020. Petroleum refining: technology, economics, and markets. 6th Edition. Boca Raton: CRC Press. 722 pp doi: 10.1201/9780429188893

[19]

Kidnay AJ, Parrish WR, McCartney DG. 2011. Fundamentals of natural gas processing. 2nd Edition. Boca Raton: CRC Press. 574 pp doi: 10.1201/b14397

[20]

Uwitonze H, Han S, Jangryeok C, Hwang KS. 2014. Design process of LNG heavy hydrocarbons fractionation: low LNG temperature recovery. Chemical Engineering and Processing: Process Intensification 85:187−195

doi: 10.1016/j.cep.2014.09.002
[21]

Pan J, Li M, Li R, Tang L, Bai J. 2022. Design and analysis of LNG cold energy cascade utilization system integrating light hydrocarbon separation, organic Rankine cycle and direct cooling. Applied Thermal Engineering 213:118672

doi: 10.1016/j.applthermaleng.2022.118672
[22]

Gao T, Lin W, Gu A. 2011. Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized. Energy Conversion and Management 52(6):2401−2404

doi: 10.1016/j.enconman.2010.12.040
[23]

Zhang R, Wu C, Song W, Deng C. 2019. Energy integration of LNG light hydrocarbon recovery and air separation. Chemical Engineering Transactions 76:409−414

doi: 10.3303/CET1976069
[24]

Fahmy MFM, Nabih HI, El-Rasoul TA. 2015. Optimization and comparative analysis of LNG regasification processes. Energy 91:371−385

doi: 10.1016/j.energy.2015.08.035
[25]

Dutta A, Karimi IA, Farooq S. 2018. Heating value reduction of LNG (liquefied natural gas) by recovering heavy hydrocarbons: technoeconomic analyses using simulation-based optimization. Industrial & Engineering Chemistry Research 57(17):5924−5932

doi: 10.1021/acs.iecr.7b04311
[26]

Hisada N, Sekiguchi M. 2004. Design and analysis of open rack LNG vaporizer. Design and Analysis of Pressure Vessels, Heat Exchangers and Piping Components. San Diego, California, USA, 2004. ASMEDC. pp. 97–104 doi: 10.1115/PVP2004-2602

[27]

Zhang R, Wu C, Song W, Deng C, Yang M. 2020. Energy integration of LNG light hydrocarbon recovery and air separation: process design and technic-economic analysis. Energy 207:118328

doi: 10.1016/j.energy.2020.118328
[28]

US Energy Information Administration (EIA). 2023. Hydrocarbon gas liquids e xplained: prices for hydrocarbon gas liquids. www.eia.gov/energyexplained/hydrocarbon-gas-liquids/prices-for-hydrocarbon-gas-liquids.php. (Accessed on September 28, 2023)