[1]

Prakash S, Verma AK. 2021. Arsenic: it's toxicity and impact on human health. International Journal of Biological Innovations 3:38−47

doi: 10.46505/IJBI.2021.3102
[2]

Dahiya V. 2022. Heavy metal toxicity of drinking water: a silent killer. GSC Biological and Pharmaceutical Sciences 19:20−25

doi: 10.30574/gscbps.2022.19.1.0107
[3]

Sharma R, Agrawal PR, Kumar R, Gupta G, 2022. Biosorption for eliminating inorganic contaminants (IOCs) from wastewater. In Biosorption for Wastewater Contaminants, eds. Selvasembian R, Singh. Hoboken, NJ: Wiley. pp. 42-62 doi: 10.1002/9781119737629.ch3

[4]

Yasasve M, Manjusha M, Manojj D, Hariharan NM, Sai Preethi P, et al. 2022. Unravelling the emerging carcinogenic contaminants from industrial waste water for prospective remediation by electrocoagulation – a review. Chemosphere 307:136017

doi: 10.1016/j.chemosphere.2022.136017
[5]

Ardila-Leal LD, Poutou-Piñales RA, Pedroza-Rodríguez AM, Quevedo-Hidalgo BE. 2021. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Molecules 26:3813

doi: 10.3390/molecules26133813
[6]

Dassanayake RS, Acharya S, Abidi N. 2021. Recent advances in biopolymer-based dye removal technologies. Molecules 26:4697

doi: 10.3390/molecules26154697
[7]

Elgarahy AM, Elwakeel KZ, Mohammad SH, Elshoubaky GA. 2021. A critical review of biosorption of dyes, heavy metals and metalloids from wastewater as an efficient and green process. Cleaner Chemical Engineering and Technology 4:100209

doi: 10.1016/j.clet.2021.100209
[8]

Selvaraj V, Swarna Karthika T, Mansiya C, Alagar M. 2021. An over review on recently developed techniques mechanisms and intermediate involved in the advanced azo dye degradation for industrial applications. Journal of Molecular Structure 1224:129195

doi: 10.1016/j.molstruc.2020.129195
[9]

Ikram M, Zahoor M, El-Saber Batiha G. 2021. Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment. Zeitschrift Für Physikalische Chemie 235:1381−93

doi: 10.1515/zpch-2020-1708
[10]

Hamzezadeh A, Rashtbari Y, Afshin S, Morovati M, Vosoughi M. 2022. Application of low-cost material for adsorption of dye from aqueous solution. International Journal of Environmental Analytical Chemistry 102:254−69

doi: 10.1080/03067319.2020.1720011
[11]

Rathi BS, Kumar PS, Vo DV. 2021. Critical review on hazardous pollutants in water environment: occurrence, monitoring, fate removal technologies and risk assessment. Science of the Total Environment 797:149134

doi: 10.1016/j.scitotenv.2021.149134
[12]

Kutluay S. 2021. Excellent adsorptive performance of novel magnetic nano-adsorbent functionalized with 8-hydroxyquinoline-5-sulfonic acid for the removal of volatile organic compounds (BTX) vapors. Fuel 287:119691

doi: 10.1016/j.fuel.2020.119691
[13]

Goswami MK, Srivastava A, Dohare RK, Tiwari AK, Srivastav A. 2023. Recent advances on conducting polymer based magnetic nanosorbents for dyes and heavy metal removal: fabrication applications and perspective. Environmental Science and Pollution Research 30:73031−60

doi: 10.1007/s11356-023-27458-4
[14]

Imdad S, Dohare RK, Agarwal M, Srivastava A. 2023. Efficient removal of Cr (VI) from wastewater using recycled polymer-based supported ionic liquid membrane technology. Separation and Purification Technology 327:124908

doi: 10.1016/j.seppur.2023.124908
[15]

Prajapati, S., Dohare, R. K., Srivastava, A, Imdad S, Agarwal M. 2024. Preparation of an emulsion membrane utilizing ionic liquids for the efficient removal of cationic dye: extraction and breakage study. Monatshefte Für Chemie - Chemical Monthly 155:1209−23

doi: 10.1007/s00706-024-03265-6
[16]

Goswami MK, Srivastava A. 2025. Polypyrrole/CoFe2O4 Nanocomposite for the removal of basic blue 3 dye from wastewater: kinetic, adsorption isotherm, and thermodynamic study. Journal of Applied Polymer Science 142:e56713

doi: 10.1002/app.56713
[17]

Srivastava A, Srivastava N, Nayak R, Singh R. 2025. Kinetic and thermodynamic evaluation of adsorptive removal of lead(II) from aqueous solutions using Polypyrrole@CoFe2O4 nano-adsorbent. Progress in Reaction Kinetics and Mechanism 50:e006

doi: 10.48130/prkm-0025-0006
[18]

Sudha M, Saranya A, Selvakumar G, Sivakumar N. 2014. Microbial degradation of azo dyes: a review. International Journal of Current Microbiology and Applied Sciences 3(2):670−90

[19]

Baban A, Yediler A, Lienert D, Kemerdere N, Kettrup A. 2023. Ozonation of high strength segregated effluents from a woollen textile dyeing and finishing plant. Dyes and Pigments 58:93−98

doi: 10.1016/S0143-7208(03)00047-0
[20]

Hassani A, Çelikdağ G, Eghbali P, Sevim M, Karaca S, et al. 2018. Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrasonics Sonochemistry 40:841−52

doi: 10.1016/j.ultsonch.2017.08.026
[21]

Kushwaha AK, Gupta N, Chattopadhyaya MC. 2014. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. Journal of Saudi Chemical Society 18:200−7

doi: 10.1016/j.jscs.2011.06.011
[22]

Shakoor S, Nasar A. 2016. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. Journal of the Taiwan Institute of Chemical Engineers 66:154−63

doi: 10.1016/j.jtice.2016.06.009
[23]

Wawrzkiewicz M. 2013. Removal of C. I. Basic Blue 3 dye by sorption onto cation exchange resin, functionalized and non-functionalized polymeric sorbents from aqueous solutions and wastewaters. Chemical Engineering Journal 217:414−25

doi: 10.1016/j.cej.2012.11.119
[24]

Muttil N, Jagadeesan S, Chanda A, Duke M, Singh SK. 2023. Production, types, and applications of activated carbon derived from waste tyres: an overview. Applied Sciences 13:257

doi: 10.3390/app13010257
[25]

Wang B, Lan J, Bo C, Gong B, Ou J. 2023. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Advances 13:4275−302

doi: 10.1039/D2RA07911A
[26]

Ani JU, Akpomie KG, Okoro UC, Aneke LE, Onukwuli OD, et al. 2020. Potentials of activated carbon produced from biomass materials for sequestration of dyes, heavy metals, and crude oil components from aqueous environment. Applied Water Science 10:69

doi: 10.1007/s13201-020-1149-8
[27]

Hameed BH, Daud FBM. 2008. Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chemical Engineering Journal 139:48−55

doi: 10.1016/j.cej.2007.07.089
[28]

Budak TB. 2023. Adsorption of basic yellow 28 and basic blue 3 dyes from aqueous solution using Silybum marianum stem as a low-cost adsorbent. Molecules 28:6639

doi: 10.3390/molecules28186639
[29]

Alene AN, Abate GY, Habte AT. 2020. Bioadsorption of basic blue dye from aqueous solution onto raw and modified waste ash as economical alternative bioadsorbent. Journal of Chemistry 2020:8746035

doi: 10.1155/2020/8746035
[30]

Regti A, Laamari MR, Stiriba SE, El Haddad M. 2017. Removal of Basic Blue 41 dyes using Persea americana-activated carbon prepared by phosphoric acid action. International Journal of Industrial Chemistry 8:187−95

doi: 10.1007/s40090-016-0090-z
[31]

Bencheqroun Z, El Mrabet I, Nawdali M, Benali M, Zaitan H. 2021. Adsorption removal of cationic dyes from aqueous solutions by raw and chemically activated cedar sawdust. Desalination and Water Treatment 240:177−90

doi: 10.5004/dwt.2021.27635
[32]

Wiśniewska M, Wawrzkiewicz M, Onyszko M, Medykowska M, Nosal-Wiercińska A, et al. 2021. Carbon-silica composite as adsorbent for removal of hazardous C.I. basic yellow 2 and C.I. basic blue 3 dyes. Materials Basel 14:3245

doi: 10.3390/ma14123245
[33]

Wong SYC, Tan YP, Abdullah AH, Ong ST, Kelang JG. 2009. The removal of basic and reactive dyes using quartenised sugar cane bagasse. Journal of Physical Science 201:59−74

[34]

Mutunga MF, Wanyonyi WC, Ongera G. 2020. Utilization of Macadamia seed husks as a low-cost sorbent for removing cationic dye (basic blue 3 dye) from aqueous solution. Environmental Chemistry and Ecotoxicology 2:194−200

doi: 10.1016/j.enceco.2020.09.005
[35]

Jiang J, Ou H, Chen R, Lu H, Zhou L, et al. 2023. The ethnopharmacological, phytochemical, and pharmacological review of Euryale ferox Salisb.: a Chinese medicine food homology. Molecules 28:4399

doi: 10.3390/molecules28114399
[36]

Kumar A, Mohan Jena H. 2015. High surface area microporous activated carbons prepared from Fox nut (Euryale ferox). shell by zinc chloride activation. Applied Surface Science 356:753−61

doi: 10.1016/j.apsusc.2015.08.074
[37]

Srivastava A, Singh R, Srivastava N. 2024. Adsorptive removal of crystal violet dye from aqueous solutions utilizing fox nutshell activated carbon (FNAC). South African Journal of Chemistry 78:227−34

[38]

Kumar A, Jena HM. 2016. Preparation and characterization of high surface area activated carbon from Fox nut (Euryale ferox). shell by chemical activation with H3PO4. Results in Physics 6:651−58

doi: 10.1016/j.rinp.2016.09.012
[39]

Kalita S, Pathak M, Devi G, Sarma HP, Bhattacharyya KG, et al. 2017. Utilization of Euryale ferox Salisbury seed shell for removal of basic fuchsin dye from water: equilibrium and kinetics investigation. RSC Advances 44:27248−59

doi: 10.1039/C7RA03014B
[40]

Zhang H, Liu Y, Wu X, Jin X, Zhang Z, et al. 2018. Kinetics and equilibrium studies of the adsorption of methylene blue on Euryale ferox shell-based activated carbon. Micro & Nano Letters 13:552−57

doi: 10.1049/mnl.2017.0638
[41]

Srivastava A, Singh R, Srivastava N. 2025. Adsorptive removal of malachite green using fox nutshell activated carbon: adsorption isotherms and kinetic study. Indian Journal of Chemical Technology 32:230−40

doi: 10.56042/ijct.v32i2.11071
[42]

Ryu Z, Zheng J, Wang M, Zhang B. 1999. Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 37:1257−64

doi: 10.1016/S0008-6223(98)00322-4
[43]

Tee GT, Gok XY, Yong WF. 2022. Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: a review. Environmental Research 212:113248

doi: 10.1016/j.envres.2022.113248
[44]

Langmuir I. 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. Jounal of American Chemical Society 40:1361−403

doi: 10.1021/ja02242a004
[45]

Weber TW, Chakravorti RK. 1974. Pore and solid diffusion models for fixed bed adsorbers. AIChE Journal 20:228−38

doi: 10.1002/aic.690200204
[46]

Freundlich H. 1906. Adsorption in solution. Physical Chemistry Society 40:1361−68

[47]

Temkin MI, Pyzhev V. 1940. Kinetic of ammonia synthesis on promoted iron catalysts. Acta Physiochimica 12:327−56

[48]

Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR. 2005. Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science 292:354−62

doi: 10.1016/j.jcis.2005.05.087
[49]

Li YH, Di Z, Ding J, Wu D, Luan Z, et al. 2005. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Research 39:605−9

doi: 10.1016/j.watres.2004.11.004
[50]

Weber WJ Jr, Morris JC. 1963. Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division 89:31−59

doi: 10.1061/JSEDAI.0000430
[51]

Chowdhury S, Mishra R, Saha P, Kushwaha P. 2011. Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159−68

doi: 10.1016/j.desal.2010.07.047