[1]

Gigault J, El Hadri H, Nguyen B, Grassl B, Rowenczyk L, et al. 2021. Nanoplastics are neither microplastics nor engineered nanoparticles. Nature Nanotechnology 16:501−507

doi: 10.1038/s41565-021-00886-4
[2]

Wang WX. 2022. Bioimaging of metals in environmental toxicological studies: linking localization and functionality. Critical Reviews in Environmental Science and Technology 52:3384−3414

doi: 10.1080/10643389.2021.1934368
[3]

Jantarat T, Doungchawee J, Zhang X, Rotello VM, Vachet RW. 2025. Image fusion for improving the spatial resolution of LA-ICP-MS imaging. Analytical Chemistry 97:14557−14564

doi: 10.1021/acs.analchem.5c01925
[4]

Gai S, Yan Q, Li S, Zhong X, Qin Y, et al. 2025. Lactoferrin nanoparticle-vanadium complex: a promising high-efficiency agent against glioblastoma by triggering autophagy and ferroptosis. Journal of Medicinal Chemistry 68:4650−4662

doi: 10.1021/acs.jmedchem.4c02696
[5]

Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, et al. 2021. X-ray-based techniques to study the nano–bio interface. ACS Nano 15:3754−3807

doi: 10.1021/acsnano.0c09563
[6]

Wang L, Yan L, Liu J, Chen C, Zhao Y. 2018. Quantification of nanomaterial/nanomedicine trafficking in vivo. Analytical Chemistry 90:589−614

doi: 10.1021/acs.analchem.7b04765
[7]

Sun X, Cai W, Chen X. 2015. Positron emission tomography imaging using radiolabeled inorganic nanomaterials. Accounts of Chemical Research 48:286−294

doi: 10.1021/ar500362y
[8]

Koffie RM, Farrar CT, Saidi LJ, William CM, Hyman BT, et al. 2011. Nanoparticles enhance brain delivery of blood–brain barrier-impermeable probes for in vivo optical and magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America 108:18837−18842

doi: 10.1073/pnas.1111405108
[9]

Cruje C, Dunmore-Buyze J, MacDonald JP, Holdsworth DW, Drangova M, et al. 2018. Polymer assembly encapsulation of lanthanide nanoparticles as contrast agents for in vivo micro-CT. Biomacromolecules 19:896−905

doi: 10.1021/acs.biomac.7b01685
[10]

Ettinger A, Wittmann T. 2014. Fluorescence live cell imaging. Methods in Cell Biology 123:77−94

doi: 10.1016/b978-0-12-420138-5.00005-7
[11]

Cortés E, Huidobro PA, Sinclair HG, Guldbrand S, Peveler WJ, et al. 2016. Plasmonic nanoprobes for stimulated emission depletion nanoscopy. ACS Nano 10:10454−10461

doi: 10.1021/acsnano.6b06361
[12]

Chakkarapani SK, Shin TH, Lee S, Park KS, Lee G, et al. 2021. Quantifying intracellular trafficking of silica-coated magnetic nanoparticles in live single cells by site-specific direct stochastic optical reconstruction microscopy. Journal of Nanobiotechnology 19:398

doi: 10.1186/s12951-021-01147-1
[13]

Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. 2015. Aggregation-induced emission: together we shine, united we soar! Chemical Reviews 115:11718−11940

doi: 10.1021/acs.chemrev.5b00263
[14]

Wang D, Tang BZ. 2019. Aggregation-induced emission luminogens for activity-based sensing. Accounts of Chemical Research 52:2559−2570

doi: 10.1021/acs.accounts.9b00305
[15]

Wang H, Li Q, Alam P, Bai H, Bhalla V, et al. 2023. Aggregation-induced emission (AIE), life and health. ACS Nano 17:14347−14405

doi: 10.1021/acsnano.3c03925
[16]

Yan N, He X, Tang BZ, Wang WX. 2019. Differentiating silver nanoparticles and ions in medaka larvae by coupling two aggregation-induced emission fluorophores. Environmental Science & Technology 53:5895−5905

doi: 10.1021/acs.est.9b01156
[17]

Wang Y, Yan N, Ji Q, Chen S, Huang Y, et al. 2024. Novel insights into the joint phytotoxicity of nanoplastics and silver ions at environmentally relevant concentrations: a dual aggregation-induced emission bioimaging approach. Environmental Science: Nano 11:4521−4535

doi: 10.1039/D4EN00559G
[18]

Yan N, Tang BZ, Wang WX. 2021. Cell cycle control of nanoplastics internalization in phytoplankton. ACS Nano 15:12237−12248

doi: 10.1021/acsnano.1c03879
[19]

Duo Y, Han L, Yang Y, Wang Z, Wang L, et al. 2024. Aggregation-induced emission luminogen: role in biopsy for precision medicine. Chemical Reviews 124:11242−11347

doi: 10.1021/acs.chemrev.4c00244
[20]

Yang M, Wang WX. 2023. Recognition and movement of polystyrene nanoplastics in fish cells. Environmental Pollution 316:120627

doi: 10.1016/j.envpol.2022.120627
[21]

Yan N, Wang Y, Wong TY, Hu Y, Xu H, et al. 2023. Surface topography of nanoplastics modulates their internalization and toxicity in liver cells. Environmental Science: Nano 10:2685−2700

doi: 10.1039/D3EN00347G
[22]

Shi X, Yan N, Niu G, Sung SHP, Liu Z, et al. 2020. In vivo monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chemical Science 11:3152−3163

doi: 10.1039/C9SC06226B
[23]

Yang M, Wang WX. 2022. Differential cascading cellular and subcellular toxicity induced by two sizes of nanoplastics. Science of The Total Environment 829:154593

doi: 10.1016/j.scitotenv.2022.154593
[24]

Li D, Qin W, Xu B, Qian J, Tang BZ. 2017. AIE nanoparticles with high stimulated emission depletion efficiency and photobleaching resistance for long-term super-resolution bioimaging. Advanced Materials 29:1703643

doi: 10.1002/adma.201703643
[25]

Gu X, Zhao E, Zhao T, Kang M, Gui C, et al. 2016. A mitochondrion-specific photoactivatable fluorescence turn-on AIE-based bioprobe for localization super-resolution microscope. Advanced Materials 28:5064−5071

doi: 10.1002/adma.201505906
[26]

Shao Z, Guagliardo P, Jiang H, Wang WX. 2021. Intra- and intercellular silver nanoparticle translocation and transformation in oyster gill filaments: coupling nanoscale secondary ion mass spectrometry and dual stable isotope tracing study. Environmental Science & Technology 55:433−446

doi: 10.1021/acs.est.0c04621
[27]

Zhong F, Li X, He M, Huang Y, Yi C, et al. 2025. Fast in vivo deep-tissue 3D imaging with selective-illumination NIR-II light-field microscopy and aberration-corrected implicit neural representation. bioRxiv: Preprint

doi: 10.1101/2025.03.16.643569
[28]

Yan N, Wang WX. 2022. Maternal transfer and biodistribution of citrate and luminogens coated silver nanoparticles in medaka fish. Journal of Hazardous Materials 433:128862

doi: 10.1016/j.jhazmat.2022.128862
[29]

Cai X, Bandla A, Mao D, Feng G, Qin W, et al. 2016. Biocompatible red fluorescent organic nanoparticles with tunable size and aggregation-induced emission for evaluation of blood–brain barrier damage. Advanced Materials 28:8760−8765

doi: 10.1002/adma.201601191
[30]

Yan N, Tsim SMJ, He X, Tang BZ, Wang WX. 2020. Direct visualization and quantification of maternal transfer of silver nanoparticles in zooplankton. Environmental Science & Technology 54:10763−10771

doi: 10.1021/acs.est.0c03228
[31]

Geng J, Zhu Z, Qin W, Ma L, Hu Y, et al. 2014. Near-infrared fluorescence amplified organic nanoparticles with aggregation-induced emission characteristics for in vivo imaging. Nanoscale 6:939−945

doi: 10.1039/C3NR04243J
[32]

Qi J, Alifu N, Zebibula A, Wei P, Lam JWY, et al. 2020. Highly stable and bright AIE dots for NIR-II deciphering of living rats. Nano Today 34:100893

doi: 10.1016/j.nantod.2020.100893
[33]

Liu S, Chen R, Zhang J, Li Y, He M, et al. 2020. Incorporation of planar blocks into twisted skeletons: boosting brightness of fluorophores for bioimaging beyond 1500 nanometer. ACS Nano 14:14228−14239

doi: 10.1021/acsnano.0c07527
[34]

Yang L, Tang BZ, Wang WX. 2023. Near-infrared-II in vivo visualization and quantitative tracking of micro/nanoplastics in fish. ACS Nano 17:19410−19420

doi: 10.1021/acsnano.3c07571
[35]

Zhang L, Jiang H, Wang WX. 2020. Subcellular imaging of localization and transformation of silver nanoparticles in the oyster larvae. Environmental Science & Technology 54:11434−11442

doi: 10.1021/acs.est.0c03342
[36]

Wang M, Wang WX. 2025. Deep learning-enabled unbiased precision toxicity assessment of zebrafish organ development. Environmental Science & Technology 59:22492−22507

doi: 10.1021/acs.est.5c10763