[1]

Yang X, Lu M, Wang Y, Wang Y, Liu Z, et al. 2021. Response mechanism of plants to drought stress. Horticulturae 7:50

doi: 10.3390/horticulturae7030050
[2]

Du G, Zhang H, Yang Y, Zhao Y, Tang K, et al. 2022. Effects of gibberellin pre-treatment on seed germination and seedling physiology characteristics in industrial hemp under drought stress condition. Life 12:1907

doi: 10.3390/life12111907
[3]

Panda D, Mishra SS, Behera PK. 2021. Drought tolerance in rice: focus on recent mechanisms and approaches. Rice Science 28:119−32

doi: 10.1016/j.rsci.2021.01.002
[4]

Tabassum T, Farooq M, Ahmad R, Zohaib A, Wahid A, et al. 2018. Terminal drought and seed priming improves drought tolerance in wheat. Physiology and Molecular Biology of Plants 24:845−56

doi: 10.1007/s12298-018-0547-y
[5]

Kaya MD, Okçu G, Atak M, Çıkılı Y, Kolsarıcı Ö. 2006. Seed treatments to overcome salt and drought stress during germination in sunflower (Helianthus annuus L.). European Journal of Agronomy 24:291−95

doi: 10.1016/j.eja.2005.08.001
[6]

Èanak P, Jockoviæ M, Æiriæ M, Mirosavljeviæ M, Mikliæ V. 2014. Effect of seed priming with various concentrations of KNO3 on sunflower seed germination parameters in in vitro drought conditions. Research on Crops 15:154

doi: 10.5958/j.2348-7542.15.1.021
[7]

Nejad SR, Bistgani ZE, Barker AV. 2022. Enhancement of seed germination of yarrow with gibberellic acid, potassium nitrate, scarification, or hydropriming. Journal of Crop Improvement 36:335−49

doi: 10.1080/15427528.2021.1968553
[8]

Ruttanaruangboworn A, Chanprasert W, Tobunluepop P, Onwimol D. 2017. Effect of seed priming with different concentrations of potassium nitrate on the pattern of seed imbibition and germination of rice (Oryza sativa L.). Journal of Integrative Agriculture 16:605−13

doi: 10.1016/S2095-3119(16)61441-7
[9]

Moaaz A, Javed M, Mauro T, Shabbir RP, Afzal R, et al. 2020. Effect of seed priming with potassium nitrate on the performance of tomato. Agriculture 10:498

doi: 10.3390/agriculture10110498
[10]

Moghaddam A, Larijani HR, Oveysi M, Moghaddam HRT, Nasri M. 2023. Alleviating the adverse effects of salinity stress on Salicornia persica using sodium nitroprusside and potassium nitrate. BMC Plant Biology 23:166

doi: 10.1186/s12870-023-04179-x
[11]

Gupta A, Singh R, Lehana P. 2013. Effect of microwaves treated soil on growth of mustard plants. International Journal of Engineering and Advanced Technology 2:808−12

[12]

Abbey L, Udenigwe C, Mohan A, Anom E. 2017. Microwave irradiation effects on vermicasts potency, and plant growth and antioxidant activity in seedlings of Chinese cabbage (Brassica rapa subsp. pekinensis). Journal of Radiation Research and Applied Sciences 10:110−16

doi: 10.1016/j.jrras.2017.01.002
[13]

Iwuala E, Ajewole T, Osundinakin M, Popoola M, Abiodun I, et al. 2021. Impact of controlled microwave radiation in enhancing the productivity of Abelmoschus esculentus seedlings (L.) Moench. Journal of Plant Interactions 16:179−86

doi: 10.1080/17429145.2021.1912422
[14]

Barbhuiya RI, Morden K, Kaur K, Navardi Z, Wroblewski C, et al. 2023. Effect of microwave treatment on germination of castor bean (Ricinus communis) seeds. CSBE/SCGAB 2023 Annual Conference, Lethbridge, Alberta, 23−26 July 2023. Canada: CSBE/SCGAB https://library.csbe-scgab.ca/all-publications/6068:effect-of-microwave-treatment-on-germination-of-castor-bean-ricinus-communis-seeds.

[15]

Vendin SV. 2022. Microwave lupine seeds treatment modes on the germination ability. IOP Conference Series: Earth and Environmental Science 1052:012009

doi: 10.1088/1755-1315/1052/1/012009
[16]

Abubakar M, Alghanem SMS, Alhaithloul HAS, Alsudays IM, Farid M, et al. 2024. Microwave seed priming and ascorbic acid assisted phytoextraction of heavy metals from surgical industry effluents through spinach. Ecotoxicology and Environmental Safety 282:116731

doi: 10.1016/j.ecoenv.2024.116731
[17]

Maswada HF, John Sunoj VS, Vara Prasad PV. 2021. A comparative study on the effect of seed pre-sowing treatments with microwave radiation and salicylic acid in alleviating the drought-induced damage in wheat. Journal of Plant Growth Regulation 40:48−66

doi: 10.1007/s00344-020-10079-3
[18]

Shariatmadari MH, Parsa M, Nezami A, Kafi M. 2017. Effects of hormonal priming with gibberellic acid on emergence, growth and yield of chickpea under drought stress. Bioscience Research 14:34−41

[19]

Medeiros MJ, Oliveira MT, Willadino L, Santos MG. 2015. Overcoming seed dormancy using gibberellic acid and the performance of young Syagrus coronata plants under severe drought stress and recovery. Plant Physiology and Biochemistry 97:278−86

doi: 10.1016/j.plaphy.2015.10.008
[20]

Cai K, Tian K, Ban Z, Xu H, Jia W, et al. 2023. Analysis of floral fragrance components in different parts of Iris typhifolia. Horticulturae 9:1268

doi: 10.3390/horticulturae9121268
[21]

Ai Q, Sun Y, Dai A, Lyu Z, Liu C, et al. 2022. Root physiological changes and transcription analysis of Iris domestica in response to persistent drought. Horticulturae 8:1162

doi: 10.3390/horticulturae8121162
[22]

Yu X, Liu Y, Cao P, Zeng X, Xu B, et al. 2023. Morphological structure and physiological and biochemical responses to drought stress of Iris japonica. Plants 12:3729

doi: 10.3390/plants12213729
[23]

Bo W, Fu B, Qin G, Xing G, Wang Y. 2017. Evaluation of drought resistance in Iris germanica L. based on subordination function and principal component analysis. Emirates Journal of Food and Agriculture 29:770−78

doi: 10.9755/ejfa.2017.v29.i10.1260
[24]

Zhang J, Huang D, Zhao X, Zhang M. 2021. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Scientific Reports 11:16308

doi: 10.1038/s41598-021-95633-z
[25]

Ni L, Wang Z, Guo J, Pei X, Liu L, et al. 2021. Full-length transcriptome sequencing and comparative transcriptome analysis to evaluate drought and salt stress in Iris lactea var. chinensis. Genes 12:434

doi: 10.3390/genes12030434
[26]

Yang Y, Guo Z, Liu Q, Tang J, Huang S, et al. 2018. Growth, physiological adaptation, and NHX gene expression analysis of Iris halophila under salt stress. Environmental Science and Pollution Research 25:25207−16

doi: 10.1007/s11356-018-2593-y
[27]

Liu Q, Tang J, Wang W, Zhang Y, Yuan H, et al. 2018. Transcriptome analysis reveals complex response of the medicinal/ornamental halophyte Iris halophila Pall. to high environmental salinity. Ecotoxicology and Environmental Safety 165:250−60

doi: 10.1016/j.ecoenv.2018.09.003
[28]

Yadav PV, Kumari M, Ahmed Z. 2011. Seed priming mediated germination improvement and tolerance to subsequent exposure to cold and salt stress in capsicum. Research Journal of Seed Science 4:125−36

doi: 10.3923/rjss.2011.125.136
[29]

Gao N, Cui GF, Lai YQ, Zhang SX, Li J. 2011. Effects of different treatments on the germination of Oriental lily seeds. Acta Agriculturae Universitatis Jiangxiensis 33:660−64 (in Chinese)

doi: 10.13836/j.jjau.2011117
[30]

Keskiner K, Tuncer B. 2019. Dormancy breaking treatments for wild Eremurus spectabilis M. Bieb seeds. Fresenius Environmental Bulletin 28:1167−73

[31]

Cárdenas J, Carranza C, Miranda D, Magnitskiy S. 2013. Effect of GA3, KNO3, and removing of basal point of seeds on germination of sweet granadilla (Passiflora ligularis Juss) and yellow passion fruit (Passiflora edulis f. flavicarpa). Revista Brasileira de Fruticultura 35:853−59

doi: 10.1590/S0100-29452013000300023
[32]

Shafiq F, Batool H, Raza SH, Hameed M. 2015. Effect of potassium nitrate seed priming on allometry of drought-stressed cotton (Gossypium hirsutum L.). Journal of Crop Science and Biotechnology 18:195−204

doi: 10.1007/s12892-015-0035-7
[33]

Zhang LX, Ruan Z, Tian L, Lai J, Zheng P, et al. 2014. Foliar-applied urea modulates nitric oxide synthesis metabolism and glycine betaine accumulation in drought-stressed maize. Pakistan Journal of Botany 46:1159−64

[34]

Hernández JA, Díaz-Vivancos P, Acosta-Motos JR, Barba-Espín G. 2022. Potassium nitrate treatment is associated with modulation of seed water uptake, antioxidative metabolism and phytohormone levels of pea seedlings. Seeds 1:5−15

doi: 10.3390/seeds1010002
[35]

Mahmood ur Rehman M, Liu J, Nijabat A, Alsudays IM, Saleh MA, et al. 2024. Seed priming with potassium nitrate alleviates the high temperature stress by modulating growth and antioxidant potential in carrot seeds and seedlings. BMC Plant Biology 24:606

doi: 10.1186/s12870-024-05292-1
[36]

Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, et al. 2012. Seed germination and vigor. Annual Review Plant Biology 63:507−33

doi: 10.1146/annurev-arplant-042811-105550
[37]

Paparella S, Araújo SS, Rossi G, Wijayasinghe M, Carbonera D, et al. 2015. Seed priming: state of the art and new perspectives. Plant Cell Report 34:1281−93

doi: 10.1007/s00299-015-1784-y
[38]

Matsushima KI, Sakagami JI. 2013. Effects of seed hydropriming on germination and seedling vigor during emergence of rice under different soil moisture conditions. American Journal of Plant Sciences 4:1584−93

doi: 10.4236/ajps.2013.48191
[39]

Forti C, Ottobrino V, Bassolino L, Toppino L, Rotino GL, et al. 2020. Molecular dynamics of pre-germinative metabolism in primed eggplant (Solanum melongena L.) seeds. Horticulture Research 7:87

doi: 10.1038/s41438-020-0310-8
[40]

Shim SI, Moon JC, Jang CS, Raymer P, Kim W. 2008. Effect of potassium nitrate priming on seed germination of seashore paspalum. HortScience 43:2259−62

doi: 10.21273/hortsci.43.7.2259
[41]

Wang S, Wang J, Guo Y. 2018. Microwave irradiation enhances the germination rate of tartary buckwheat and content of some compounds in its sprouts. Polish Journal of Food and Nutrition Sciences 68(3):195−205

doi: 10.1515/pjfns-2017-0025
[42]

Szopińska D, Dorna H. 2021. The effect of microwave treatment on germination and health of carrot (Daucus carota L.) seeds. Agronomy 11:2571

doi: 10.3390/agronomy11122571
[43]

Ma H, Xu X, Wang S, Wang J, Wang S. 2022. Effects of microwave irradiation of Fagopyrum tataricum seeds on the physicochemical and functional attributes of sprouts. LWT 165:113738

doi: 10.1016/j.lwt.2022.113738
[44]

Benlloch-Tinoco M, Igual M, Rodrigo D, Martínez-Navarrete N. 2013. Comparison of microwaves and conventional thermal treatment on enzymes activity and antioxidant capacity of kiwifruit puree. Innovative Food Science & Emerging Technologies 19:166−72

doi: 10.1016/j.ifset.2013.05.007
[45]

Ding Q, Dang X, Zhan Y. 2007. Effect of potassium nitrate and gibberellin solution soaking on Mini-watermelon seed germination. Journal of South China University of Tropical Agriculture 13:14−16 (in Chinese)

[46]

Machado de Mello A, Streck NA, Blankenship EE, Paparozzi ET. 2009. Gibberellic acid promotes seed germination in Penstemon digitalis cv. Husker Red. HortScience 44:870−73

doi: 10.21273/HORTSCI.44.3.870
[47]

Patel M, Tank RV, Bhanderi DR, Patil HM, Patel V, et al. 2018. Response of soaking time and chemicals on germination and growth of tamarind (Tamarindus indica L.). Plant Archives 18:51−56

[48]

Iralu V, Upadhaya K. 2018. Seed dormancy, germination and seedling characteristics of Elaeocarpus prunifolius Wall. ex Müll. Berol. : a threatened tree species of north-eastern India. New Zealand Journal of Forestry Science 48:16

doi: 10.1186/s40490-018-0121-y
[49]

Shah SH, Islam S, Mohammad F, Siddiqui MH. 2023. Gibberellic acid: a versatile regulator of plant growth, development and stress responses. Journal of Plant Growth Regulation 42:7352−73

doi: 10.1007/s00344-023-11035-7
[50]

Niu Y, Zhao Q, Zhang X, Ai Q, Song S. 2015. Research progress on the role and regulation mechanism of gibberellin signal in response to abiotic stress. Biotechnology Bulletin 31:31−37 (in Chinese)

doi: 10.13560/j.cnki.biotech.bull.1985.2015.10.009
[51]

Rani M, Singh G, Singh N, Kumar D. 2024. Effect of gibberellic acid, kinetin and potassium nitrate on seed germination of papaya (Carica papaya L.) cv. Red Lady. Asian Journal of Advances in Agricultural Research 24:53−60

doi: 10.9734/ajaar/2024/v24i7522
[52]

Kintl A, Huňady I, Vymyslický T, Ondrisková V, Hammerschmiedt T, et al. 2021. Effect of seed coating and PEG-induced drought on the germination capacity of five clover crops. Plants 10:724

doi: 10.3390/plants10040724
[53]

Duermeyer L, Khodapanahi E, Yan D, Krapp A, Rothstein SJ, et al. 2018. Regulation of seed dormancy and germination by nitrate. Seed Science Research 28:150−7

doi: 10.1017/S096025851800020X
[54]

Heikal MM, Shaddad MA, Ahmed AM. 1982. Effect of water stress and gibberellic acid on germination of flax, sesame and onion seeds. Biologia Plantarum 24:124−29

doi: 10.1007/BF02902858
[55]

Edelstein M, Ben Tal Y, Wodner M, Kigel J. 1995. Role of endogenous gibberellins in germination of melon (Cucumis melo) seeds. Physiologia Plantarum 95:113−19

doi: 10.1111/j.1399-3054.1995.tb00816.x
[56]

Yang Y, Liu Q, Wang GX, Wang XD, Guo JY. 2010. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New Forests 39:231−43

doi: 10.1007/s11056-009-9167-2
[57]

Mangwende E, Chirwa PW, Aveling TAS. 2020. Evaluation of seed treatments against Colletotrichum kahawae subsp. cigarro on Eucalyptus spp. Crop Protection 132:105113

doi: 10.1016/j.cropro.2020.105113