[1]

Larsson DGJ, Flach CF. 2022. Antibiotic resistance in the environment. Nature Reviews Microbiology 20:257−269

doi: 10.1038/s41579-021-00649-x
[2]

World Health Organization (WHO). 2014. Antimicrobial resistance: global report on surveillance. World Health Organization

[3]

O'Neill, J. 2016. Tackling drug-resistant infections globally: final report and recommendations. Review on Antimicrobial Resistance, Wellcome Trust and HM Government.

[4]

Naghavi M, Vollset SE, Ikuta KS, Swetschinski LR, Gray AP, et al. 2024. Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet 399:1199−1226

doi: 10.1016/S0140-6736(24)01867-1
[5]

UN Environment Programme. 2023. To reduce superbugs, world must cut down pollution. UNEP

[6]

Pruden A, Pei R, Storteboom H, Carlson KH. 2006. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environmental Science & Technology 40:7445−7450

doi: 10.1021/es060413l
[7]

Davies J, Davies D. 2010. Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews 74:417−433

doi: 10.1128/mmbr.00016-10
[8]

Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, et al. 2015. Tackling antibiotic resistance: the environmental framework. Nature Reviews Microbiology 13:310−317

doi: 10.1038/nrmicro3439
[9]

Zhu YG, Gillings M, Simonet P, Stekel D, Banwart S, et al. 2017. Microbial mass movements. Science 357:1099−1100

doi: 10.1126/science.aao3007
[10]

Nikaido H. 2009. Multidrug resistance in bacteria. Annual Review of Biochemistry 78:119−146

doi: 10.1146/annurev.biochem.78.082907.145923
[11]

Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews 31:e00088-17

doi: 10.1128/cmr.00088-17
[12]

Manaia CM, Rocha J, Scaccia N, Marano R, Radu E, et al. 2018. Antibiotic resistance in wastewater treatment plants: tackling the black box. Environment International 115:312−324

doi: 10.1016/j.envint.2018.03.044
[13]

World Health Organization (WHO). 2015. Global action plan on antimicrobial resistance. WHO

[14]

Beckley AM, Wright ES. 2021. Identification of antibiotic pairs that evade concurrent resistance via a retrospective analysis of antimicrobial susceptibility test results. The Lancet Microbe 2:e545−e554

doi: 10.1016/s2666-5247(21)00118-x
[15]

Davis BC, Keenum I, Calarco J, Liguori K, Milligan E, et al. 2022. Towards the standardization of Enterococcus culture methods for waterborne antibiotic resistance monitoring: a critical review of trends across studies. Water Research X 17:100161

doi: 10.1016/j.wroa.2022.100161
[16]

Wang KL, Zhang JX, Min D, Lv JL, Liu DF, et al. 2022. Detection and quantification of antimicrobial-resistant cells in aquatic environments by bioorthogonal noncanonical amino acid tagging. Environmental Science & Technology 56:15685−15694

doi: 10.1021/acs.est.2c05024
[17]

Curti LA, Pereyra-Bonnet F, Repizo GD, Fay JV, Salvatierra K, et al. 2020. CRISPR-based platform for carbapenemases and emerging viruses detection using Cas12a (Cpf1) effector nuclease. Emerging Microbes & Infections 9:1140−1148

doi: 10.1080/22221751.2020.1763857
[18]

Djordjevic SP, Jarocki VM, Seemann T, Cummins ML, Watt AE, et al. 2024. Genomic surveillance for antimicrobial resistance—a One Health perspective. Nature Reviews Genetics 25:142−157

doi: 10.1038/s41576-023-00649-y
[19]

Ikhimiukor OO, Odih EE, Donado-Godoy P, Okeke IN. 2022. A bottom-up view of antimicrobial resistance transmission in developing countries. Nature Microbiology 7:757−765

doi: 10.1038/s41564-022-01124-w
[20]

Kalbasi A, Ribas A. 2020. Tumour-intrinsic resistance to immune checkpoint blockade. Nature Reviews Immunology 20:25−39

doi: 10.1038/s41577-019-0218-4
[21]

Martínez JL. 2008. Antibiotics and antibiotic resistance genes in natural environments. Science 321:365−367

doi: 10.1126/science.1159483
[22]

D'Costa VM, King CE, Kalan L, Morar M, Sung WWL, et al. 2011. Antibiotic resistance is ancient. Nature 477:457−461

doi: 10.1038/nature10388
[23]

Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, et al. 2012. Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953

doi: 10.1371/journal.pone.0034953
[24]

Zhang QQ, Ying GG, Pan CG, Liu YS, Zhao JL. 2015. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environmental Science & Technology 49:6772−6782

doi: 10.1021/acs.est.5b00729
[25]

Sarmah AK, Meyer MT, Boxall ABA. 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725−759

doi: 10.1016/j.chemosphere.2006.03.026
[26]

Lee K, Kim DW, Lee DH, Kim YS, Bu JH, et al. 2020. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 8:2

doi: 10.1186/s40168-019-0774-7
[27]

Wang Y, Xu X, Jia S, Qu M, Pei Y, et al. 2025. A global atlas and drivers of antimicrobial resistance in Salmonella during 1900−2023. Nature Communications 16:4611

doi: 10.1038/s41467-025-59758-3
[28]

Wang Y, Xu X, Zhu B, Lyu N, Liu Y, et al. 2023. Genomic analysis of almost 8,000 Salmonella genomes reveals drivers and landscape of antimicrobial resistance in China. Microbiology Spectrum 11:e02080-23

doi: 10.1128/spectrum.02080-23
[29]

Zhu C, Wu L, Ning D, Tian R, Gao S, et al. 2025. Global diversity and distribution of antibiotic resistance genes in human wastewater treatment systems. Nature Communications 16:4006

doi: 10.1038/s41467-025-59019-3
[30]

Zhu L, Yuan L, Shuai XY, Lin ZJ, Sun YJ, et al. 2023. Deciphering basic and key traits of antibiotic resistome in influent and effluent of hospital wastewater treatment systems. Water Research 231:119614

doi: 10.1016/j.watres.2023.119614
[31]

Chen M, Liu Y, Zhou Y, Pei Y, Qu M, et al. 2025. Deciphering antibiotic resistance genes and plasmids in pathogenic bacteria from 166 hospital effluents in Shanghai, China. Journal of Hazardous Materials 483:136641

doi: 10.1016/j.jhazmat.2024.136641
[32]

Karkman A, Do TT, Walsh F, Virta MPJ. 2018. Antibiotic-resistance genes in waste water. Trends in Microbiology 26:220−228

doi: 10.1016/j.tim.2017.09.005
[33]

Ju F, Beck K, Yin X, Maccagnan A, McArdell CS, et al. 2019. Wastewater treatment plant resistomes are shaped by bacterial composition, genetic exchange, and upregulated expression in the effluent microbiomes. The ISME Journal 13:346−360

doi: 10.1038/s41396-018-0277-8
[34]

Lee J, Ju F, Maile-Moskowitz A, Beck K, Maccagnan A, et al. 2021. Unraveling the riverine antibiotic resistome: the downstream fate of anthropogenic inputs. Water Research 197:117050

doi: 10.1016/j.watres.2021.117050
[35]

Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, et al. 2015. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environmental Science & Technology 49:7356−7363

doi: 10.1021/acs.est.5b01012
[36]

Li B, Jiang L, Johnson T, Wang G, Sun W, et al. 2025. Global health risks lurking in livestock resistome. Science Advances 11:eadt8073

doi: 10.1126/sciadv.adt8073
[37]

Zhu L, Lian Y, Lin D, Huang D, Yao Y, et al. 2022. Insights into microbial contamination in multi-type manure-amended soils: the profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Journal of Hazardous Materials 437:129356

doi: 10.1016/j.jhazmat.2022.129356
[38]

He LX, He LY, Gao FZ, Zhang M, Chen J, et al. 2023. Mariculture affects antibiotic resistome and microbiome in the coastal environment. Journal of Hazardous Materials 452:131208

doi: 10.1016/j.jhazmat.2023.131208
[39]

Liu M, Ding R, Zhang Y, Gao Y, Tian Z, et al. 2014. Abundance and distribution of Macrolide-Lincosamide-Streptogramin resistance genes in an anaerobic-aerobic system treating spiramycin production wastewater. Water Research 63:33−41

doi: 10.1016/j.watres.2014.05.045
[40]

Qiao LK, He LY, Gao FZ, Huang Z, Bai H, et al. 2025. Deciphering key traits and dissemination of antibiotic resistance genes and degradation genes in pharmaceutical wastewater receiving environments. Water Research 275:123241

doi: 10.1016/j.watres.2025.123241
[41]

Zhang Z, Zhang G, Ju F. 2022. Using culture-enriched phenotypic metagenomics for targeted high-throughput monitoring of the clinically important fraction of the β-lactam resistome. Environmental Science & Technology 56:11429−11439

doi: 10.1021/acs.est.2c03627
[42]

Raymond F, Boissinot M, Ouameur AA, Déraspe M, Plante PL, et al. 2019. Culture-enriched human gut microbiomes reveal core and accessory resistance genes. Microbiome 7:56

doi: 10.1186/s40168-019-0669-7
[43]

Flach CF, Genheden M, Fick J, Joakim Larsson DG. 2018. A comprehensive screening of Escherichia coli isolates from Scandinavia's largest sewage treatment plant indicates no selection for antibiotic resistance. Environmental Science & Technology 52:11419−11428

doi: 10.1021/acs.est.8b03354
[44]

Milligan EG, Calarco J, Davis BC, Keenum IM, Liguori K, et al. 2023. A systematic review of culture-based methods for monitoring antibiotic-resistant acinetobacter, aeromonas, and pseudomonas as environmentally relevant pathogens in wastewater and surface water. Current Environmental Health Reports 10:154−171

doi: 10.1007/s40572-023-00393-9
[45]

Zhang H, Wang L, Zhang Z, Lin J, Ju F. 2023. Cost-efficient micro-well array-based colorimetric antibiotic susceptibility testing (MacAST) for bacteria from culture or community. Biosensors 13:1028

doi: 10.3390/bios13121028
[46]

Marutescu LG. 2023. Current and future flow cytometry applications contributing to antimicrobial resistance control. Microorganisms 11:1300

doi: 10.3390/microorganisms11051300
[47]

Macedo G, Olesen AK, Maccario L, Hernandez Leal L, Maas PVD, et al. 2022. Horizontal gene transfer of an IncP1 plasmid to soil bacterial community introduced by Escherichia coli through manure amendment in soil microcosms. Environmental Science & Technology 56:11398−11408

doi: 10.1021/acs.est.2c02686
[48]

Yang QE, Ma X, Li M, Zhao M, Zeng L, et al. 2024. Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages. Nature Communications 15:3654

doi: 10.1038/s41467-024-48006-9
[49]

Cui L, Li HZ, Yang K, Zhu LJ, Xu F, et al. 2021. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. TrAC Trends in Analytical Chemistry 143:116415

doi: 10.1016/j.trac.2021.116415
[50]

Huang YH, Wei H, Santiago PJ, Thrift WJ, Ragan R, et al. 2023. Sensing antibiotics in wastewater using surface-enhanced raman scattering. Environmental Science & Technology 57:4880−4891

doi: 10.1021/acs.est.3c00027
[51]

Wang Q, Jiang C, Zhang Y, Li M, Shi X, et al. 2023. SERS sensor combined with the dual DNA cycling amplification assay for the sensitive detection of antibiotic resistance gene in environmental samples. Sensors and Actuators B: Chemical 396:134599

doi: 10.1016/j.snb.2023.134599
[52]

Cui L, Xin Y, Yang K, Li H, Tan F, et al. 2023. Live tracking metabolic networks and physiological responses within microbial assemblages at single-cell level. PNAS Nexus 2:pgad006

doi: 10.1093/pnasnexus/pgad006
[53]

Yang K, Xu F, Zhu L, Li H, Sun Q, et al. 2023. An isotope-labeled single-cell Raman spectroscopy approach for tracking the physiological evolution trajectory of bacteria toward antibiotic resistance. Angewandte Chemie International Edition 135:e202217412

doi: 10.1002/anie.202217412
[54]

Lin W, Li R, Cao S, Li H, Yang K, et al. 2024. High-throughput single-cell metabolic labeling, sorting, and sequencing of active antibiotic-resistant bacteria in the environment. Environmental Science & Technology 58:17838−17849

doi: 10.1021/acs.est.4c02906
[55]

Yang K, Chen QL, Chen ML, Li HZ, Liao H, et al. 2020. Temporal dynamics of antibiotic resistome in the plastisphere during microbial colonization. Environmental Science & Technology 54:11322−11332

doi: 10.1021/acs.est.0c04292
[56]

Yi X, Song Y, Xu X, Peng D, Wang J, et al. 2021. Development of a fast Raman-assisted antibiotic susceptibility test (FRAST) for the antibiotic resistance analysis of clinical urine and blood samples. Analytical Chemistry 93:5098−5106

doi: 10.1021/acs.analchem.0c04709
[57]

Li H, Hsieh K, Wong PK, Mach KE, Liao JC, et al. 2023. Single-cell pathogen diagnostics for combating antibiotic resistance. Nature Reviews Methods Primers 3:6

doi: 10.1038/s43586-022-00190-y
[58]

Vrioni G, Tsiamis C, Oikonomidis G, Theodoridou K, Kapsimali V, et al. 2018. MALDI-TOF mass spectrometry technology for detecting biomarkers of antimicrobial resistance: current achievements and future perspectives. Annals of Translational Medicine 6:240

doi: 10.21037/atm.2018.06.28
[59]

Weis C, Cuénod A, Rieck B, Dubuis O, Graf S, et al. 2022. Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning. Nature Medicine 28:164−174

doi: 10.1038/s41591-021-01619-9
[60]

Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, et al. 2008. Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. Journal of Clinical Microbiology 46:1946−1954

doi: 10.1128/jcm.00157-08
[61]

Ramzan M, Raza A, Nisa Zu, Abdel-Massih RM, Al Bakain R, et al. 2024. Detection of antimicrobial resistance (AMR) and antimicrobial susceptibility testing (AST) using advanced spectroscopic techniques: a review. TrAC Trends in Analytical Chemistry 172:117562

doi: 10.1016/j.trac.2024.117562
[62]

Burckhardt I, Zimmermann S. 2011. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. Journal of Clinical Microbiology 49:3321−3324

doi: 10.1128/jcm.00287-11
[63]

Maus A, Bisha B, Fagerquist C, Basile F. 2020. Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS. Journal of Applied Microbiology 128:697−709

doi: 10.1111/jam.14507
[64]

Flores-Treviño S, Garza-González E, Mendoza-Olazarán S, Morfín-Otero R, Camacho-Ortiz A, et al. 2019. Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Scientific Reports 9:18945

doi: 10.1038/s41598-019-55430-1
[65]

Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. 2017. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environmental Research 152:7−16

doi: 10.1016/j.envres.2016.09.020
[66]

Sandberg KD, Ishii S, LaPara TM. 2018. A microfluidic quantitative polymerase chain reaction method for the simultaneous analysis of dozens of antibiotic resistance and heavy metal resistance genes. Environmental Science & Technology Letters 5:20−25

doi: 10.1021/acs.estlett.7b00552
[67]

Zhang XX, Zhang T, Fang HHP. 2009. Antibiotic resistance genes in water environment. Applied Microbiology and Biotechnology 82:397−414

doi: 10.1007/s00253-008-1829-z
[68]

Dung TTN, Phat VV, Vinh C, Lan NPH, Phuong NLN, et al. 2024. Development and validation of multiplex real-time PCR for simultaneous detection of six bacterial pathogens causing lower respiratory tract infections and antimicrobial resistance genes. BMC Infectious Diseases 24:164

doi: 10.1186/s12879-024-09028-2
[69]

Lee SH, Ruan SY, Pan SC, Lee TF, Chien JY, et al. 2019. Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units. Journal of Microbiology, Immunology and Infection 52:920−928

doi: 10.1016/j.jmii.2019.10.009
[70]

Volkmann H, Schwartz T, Bischoff P, Kirchen S, Obst U. 2004. Detection of clinically relevant antibiotic-resistance genes in municipal wastewater using real-time PCR (TaqMan). Journal of Microbiological Methods 56:277−286

doi: 10.1016/j.mimet.2003.10.014
[71]

Tao CW, Hsu BM, Ji WT, Hsu TK, Kao PM, et al. 2014. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR. Science of The Total Environment 496:116−121

doi: 10.1016/j.scitotenv.2014.07.024
[72]

Ishii S. 2020. Quantification of antibiotic resistance genes for environmental monitoring: current methods and future directions. Current Opinion in Environmental Science & Health 16:47−53

doi: 10.1016/j.coesh.2020.02.004
[73]

Delgado-Baquerizo M, Hu HW, Maestre FT, Guerra CA, Eisenhauer N, et al. 2022. The global distribution and environmental drivers of the soil antibiotic resistome. Microbiome 10:219

doi: 10.1186/s40168-022-01405-w
[74]

Bueno I, Verdugo C, Jimenez-Lopez O, Alvarez PP, Gonzalez-Rocha G, et al. 2020. Role of wastewater treatment plants on environmental abundance of Antimicrobial Resistance Genes in Chilean rivers. International Journal of Hygiene and Environmental Health 223:56−64

doi: 10.1016/j.ijheh.2019.10.006
[75]

Zhou XY, Li H, Zhou SYD, Zhang YS, Su JQ. 2023. City-scale distribution of airborne antibiotic resistance genes. Science of The Total Environment 856:159176

doi: 10.1016/j.scitotenv.2022.159176
[76]

Pärnänen KMM, Narciso-da-Rocha C, Kneis D, Berendonk TU, Cacace D, et al. 2019. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Science Advances 5:eaau9124

doi: 10.1126/sciadv.aau9124
[77]

Nyaruaba R, Mwaliko C, Kering KK, Wei H. 2019. Droplet digital PCR applications in the tuberculosis world. Tuberculosis 117:85−92

doi: 10.1016/j.tube.2019.07.001
[78]

Cavé L, Brothier E, Abrouk D, Bouda PS, Hien E, et al. 2016. Efficiency and sensitivity of the digital droplet PCR for the quantification of antibiotic resistance genes in soils and organic residues. Applied Microbiology and Biotechnology 100:10597−10608

doi: 10.1007/s00253-016-7950-5
[79]

Wang X, Shang X, Huang X. 2020. Next-generation pathogen diagnosis with CRISPR/Cas-based detection methods. Emerging Microbes & Infections 9:1682−1691

doi: 10.1080/22221751.2020.1793689
[80]

Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 356:438−442

doi: 10.1126/science.aam9321
[81]

Pardee K, Green AA, Takahashi MK, Braff D, Lambert G, et al. 2016. Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 165:1255−1266

doi: 10.1016/j.cell.2016.04.059
[82]

Aman R, Mahas A, Mahfouz M. 2020. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synthetic Biology 9:1226−1233

doi: 10.1021/acssynbio.9b00507
[83]

Cheng ZH, Luo XY, Liu DF, Han J, Wang HD, et al. 2024. Optimized antibiotic resistance genes monitoring scenarios promote sustainability of urban water cycle. Environmental Science & Technology 58:9636−9645

doi: 10.1021/acs.est.4c02048
[84]

Yang Y, Li B, Ju F, Zhang T. 2013. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. Environmental Science & Technology 47:10197−10205

doi: 10.1021/es4017365
[85]

Yang Y, Cai S, Mo C, Dong J, Chen S, et al. 2025. Profiles of antibiotic resistome risk in diverse water environments. Communications Earth & Environment 6:158

doi: 10.1038/s43247-025-02139-x
[86]

Yin X, Zheng X, Li L, Zhang AN, Jiang XT, et al. 2023. ARGs-OAP v3.0: antibiotic-resistance gene database curation and analysis pipeline optimization. Engineering 27:234−241

doi: 10.1016/j.eng.2022.10.011
[87]

Yuan L, Wang Y, Zhang L, Palomo A, Zhou J, et al. 2021. Pathogenic and indigenous denitrifying bacteria are transcriptionally active and key multi-antibiotic-resistant players in wastewater treatment plants. Environmental Science & Technology 55:10862−10874

doi: 10.1021/acs.est.1c02483
[88]

Shuai M, Zhang G, Zeng FF, Fu Y, Liang X, et al. 2022. Human gut antibiotic resistome and progression of diabetes. Advanced Science 9:e2104965

doi: 10.1002/advs.202104965
[89]

Ju F, Zhang T. 2015. Experimental design and bioinformatics analysis for the application of metagenomics in environmental sciences and biotechnology. Environmental Science & Technology 49:12628−12640

doi: 10.1021/acs.est.5b03719
[90]

Boolchandani M, D'Souza AW, Dantas G. 2019. Sequencing-based methods and resources to study antimicrobial resistance. Nature Reviews Genetics 20:356−370

doi: 10.1038/s41576-019-0108-4
[91]

Liu B, Pop M. 2009. ARDB—antibiotic resistance genes database. Nucleic Acids Research 37:D443−D447

doi: 10.1093/nar/gkn656
[92]

McArthur AG, Waglechner N, Nizam F, Yan A, Azad MA, et al. 2013. The comprehensive antibiotic resistance database. Antimicrobial Agents and Chemotherapy 57:3348−3357

doi: 10.1128/aac.00419-13
[93]

Yin X, Jiang XT, Chai B, Li L, Yang Y, et al. 2018. ARGs-OAP v2.0 with an expanded SARG database and Hidden Markov Models for enhancement characterization and quantification of antibiotic resistance genes in environmental metagenomes. Bioinformatics 34:2263−2270

doi: 10.1093/bioinformatics/bty053
[94]

Pehrsson EC, Tsukayama P, Patel S, Mejía-Bautista M, Sosa-Soto G, et al. 2016. Interconnected microbiomes and resistomes in low-income human habitats. Nature 533:212−216

doi: 10.1038/nature17672
[95]

Tsukayama P, Boolchandani M, Patel S, Pehrsson EC, Gibson MK, et al. 2018. Characterization of wild and captive baboon gut microbiota and their antibiotic resistomes. mSystems 3:e00016-18

doi: 10.1128/mSystems.00016-18
[96]

Pal C, Bengtsson-Palme J, Kristiansson E, Larsson DGJ. 2016. The structure and diversity of human, animal and environmental resistomes. Microbiome 4:54

doi: 10.1186/s40168-016-0199-5
[97]

Carr R, Borenstein E. 2014. Comparative analysis of functional metagenomic annotation and the mappability of short reads. PLoS One 9:e105776

doi: 10.1371/journal.pone.0105776
[98]

Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nature Biotechnology 35:833−844

doi: 10.1038/nbt.3935
[99]

Zhao R, Yu K, Zhang J, Zhang G, Huang J, et al. 2020. Deciphering the mobility and bacterial hosts of antibiotic resistance genes under antibiotic selection pressure by metagenomic assembly and binning approaches. Water Research 186:116318

doi: 10.1016/j.watres.2020.116318
[100]

Tamburini FB, Maghini D, Oduaran OH, Brewster R, Hulley MR, et al. 2022. Short- and long-read metagenomics of urban and rural South African gut microbiomes reveal a transitional composition and undescribed taxa. Nature Communications 13:926

doi: 10.1038/s41467-021-27917-x
[101]

Dai D, Brown C, Bürgmann H, Larsson DGJ, Nambi I, et al. 2022. Long-read metagenomic sequencing reveals shifts in associations of antibiotic resistance genes with mobile genetic elements from sewage to activated sludge. Microbiome 10:20

doi: 10.1186/s40168-021-01216-5
[102]

Deamer D, Akeson M, Branton D. 2016. Three decades of nanopore sequencing. Nature Biotechnology 34:518−524

doi: 10.1038/nbt.3423
[103]

Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W, et al. 2015. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nature Biotechnology 33:296−300

doi: 10.1038/nbt.3103
[104]

Sauerborn E, Corredor NC, Reska T, Perlas A, da Fonseca Atum SV, et al. 2024. Detection of hidden antibiotic resistance through real-time genomics. Nature Communications 15:5494

doi: 10.1038/s41467-024-49851-4
[105]

Zhao Y, Huang F, Wang W, Gao R, Fan L, et al. 2023. Application of high-throughput sequencing technologies and analytical tools for pathogen detection in urban water systems: progress and future perspectives. Science of The Total Environment 900:165867

doi: 10.1016/j.scitotenv.2023.165867
[106]

Wardenburg KE, Potter RF, D'Souza AW, Hussain T, Wallace MA, et al. 2019. Phenotypic and genotypic characterization of linezolid-resistant Enterococcus faecium from the USA and Pakistan. Journal of Antimicrobial Chemotherapy 74:3445−3452

doi: 10.1093/jac/dkz367
[107]

Hughes D, Andersson DI. 2017. Environmental and genetic modulation of the phenotypic expression of antibiotic resistance. FEMS Microbiology Reviews 41:374−391

doi: 10.1093/femsre/fux004
[108]

Imaizumi T, Tran HG, Swartz TE, Briggs WR, Kay SA. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:302−306

doi: 10.1038/nature02090
[109]

Whelan FJ, Waddell B, Syed SA, Shekarriz S, Rabin HR, et al. 2020. Culture-enriched metagenomic sequencing enables in-depth profiling of the cystic fibrosis lung microbiota. Nature Microbiology 5:379−390

doi: 10.1038/s41564-019-0643-y
[110]

Ju F, Lee J, Beck K, Zhang G, Gekenidis M-T, et al. 2022. Phenotypic metagenomics tracks wastewater-associated clinically important β-lactam resistant bacteria invading river habitats. Research Square: Version 1

doi: 10.21203/rs.3.rs-1589365/v1
[111]

Wang Y, Hu Y, Liu F, Cao J, Lv N, et al. 2020. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environment International 138:105649

doi: 10.1016/j.envint.2020.105649
[112]

Wang Y, Lyu N, Liu F, Liu WJ, Bi Y, et al. 2021. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environment International 153:106534

doi: 10.1016/j.envint.2021.106534
[113]

Li HZ, Yang K, Liao H, Lassen SB, Su JQ, et al. 2022. Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics. Proceedings of the National Academy of Sciences of the United States of America 119:e2201473119

doi: 10.1073/pnas.2201473119
[114]

Lund D, Parras-Moltó M, Inda-Díaz JS, Ebmeyer S, Larsson DGJ, et al. 2025. Genetic compatibility and ecological connectivity drive the dissemination of antibiotic resistance genes. Nature Communications 16:2595

doi: 10.1038/s41467-025-57825-3
[115]

Pang F, Tao A, Ayra-Pardo C, Wang T, Yu Z, et al. 2022. Plant organ- and growth stage-diversity of endophytic bacteria with potential as biofertilisers isolated from wheat (Triticum aestivum L.). BMC Plant Biology 22:276

doi: 10.1186/s12870-022-03615-8
[116]

Li X, Bickel S, Wicaksono WA, Lin X, Berg G, et al. 2025. Unraveling antibiotic resistance dynamics at the soil–plant interface under climate change for One Health. One Health Advances 3:16

doi: 10.1186/s44280-025-00081-3
[117]

Zhu D, Ding J, Wang YF, Zhu YG. 2022. Effects of trophic level and land use on the variation of animal antibiotic resistome in the soil food web. Environmental Science & Technology 56:14937−14947

doi: 10.1021/acs.est.2c00710
[118]

Maeusli M, Lee B, Miller S, Reyna Z, Lu P, et al. 2020. Horizontal gene transfer of antibiotic resistance from Acinetobacter baylyi to Escherichia coli on lettuce and subsequent antibiotic resistance transmission to the gut microbiome. mSphere 5:e00329-20

doi: 10.1128/msphere.00329-20
[119]

World Health Organization (WHO). 2019. Global action plan on AMR: Objective 2. WHO

[120]

Zhang Z, Zhang Q, Wang T, Xu N, Lu T, et al. 2022. Assessment of global health risk of antibiotic resistance genes. Nature Communications 13:1553

doi: 10.1038/s41467-022-29283-8
[121]

Huang X, He Y, Zhang L, Chen J, Zhang G, et al. 2025. Deciphering structuring mechanism and increased health risk of antibiotic resistome from a coastal river basin to the downstream estuary and bay under anthropogenic disturbances. Journal of Hazardous Materials 499:140040

doi: 10.1016/j.jhazmat.2025.140040
[122]

Topp E, Larsson DGJ, Miller DN, Van den Eede C, Virta MPJ. 2018. Antimicrobial resistance and the environment: assessment of advances, gaps and recommendations for agriculture, aquaculture and pharmaceutical manufacturing. FEMS Microbiology Ecology 94:fix185

doi: 10.1093/femsec/fix185
[123]

Bengtsson-Palme J, Larsson DGJ. 2016. Concentrations of antibiotics predicted to select for resistant bacteria: proposed limits for environmental regulation. Environment International 86:140−149

doi: 10.1016/j.envint.2015.10.015
[124]

World Health Organization (WHO). 2023. A one health priority research agenda for antimicrobial resistance. WHO

[125]

Wales AD, Davies RH. 2015. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 4:567−604

doi: 10.3390/antibiotics4040567
[126]

Hidayatullah IM, Steven S, Kusmayadi A, Rahmatika I, Reski M, et al. 2025. Advances in antibiotic biodegradation: emerging strategies and challenges in mitigating environmental contamination and resistance. Current Pollution Reports 11:35

doi: 10.1007/s40726-025-00369-3
[127]

Li Q, Zhang LY, Zhou YJ, Cui HL, Ren YJ, et al. 2025. Positive contribution of antimicrobial biodegradation in mitigating conjugative transfer of antibiotic resistance genes. Environmental Science & Technology 59:21645−21656

doi: 10.1021/acs.est.5c06928
[128]

Mirski T, Lidia M, Nakonieczna A, Gryko R. 2019. Bacteriophages, phage endolysins and antimicrobial peptides–the possibilities for their common use to combat infections and in the design of new drugs. Annals of Agricultural and Environmental Medicine 26:203−209

doi: 10.26444/aaem/105390
[129]

Guo J, Wang Y, Ahmed Y, Jin M, Li J. 2020. Control strategies to combat dissemination of antibiotic resistance in urban water systems. In Antibiotic Resistance in the Environment, eds Manaia C, Donner E, Vaz-Moreira I, Hong P. Vol 91. Cham: Springer. pp. 147–187 doi: 10.1007/698_2020_474

[130]

Yoon Y, Chung HJ, Wen Di DY, Dodd MC, Hur HG, et al. 2017. Inactivation efficiency of plasmid-encoded antibiotic resistance genes during water treatment with chlorine, UV, and UV/H2O2. Water Research 123:783−793

doi: 10.1016/j.watres.2017.06.056
[131]

Liu SS, Qu HM, Yang D, Hu H, Liu WL, et al. 2018. Chlorine disinfection increases both intracellular and extracellular antibiotic resistance genes in a full-scale wastewater treatment plant. Water Research 136:131−136

doi: 10.1016/j.watres.2018.02.036
[132]

Wang J, Chen X. 2022. Removal of antibiotic resistance genes (ARGs) in various wastewater treatment processes: an overview. Critical Reviews in Environmental Science and Technology 52:571−630

doi: 10.1080/10643389.2020.1835124
[133]

Chang PH, Juhrend B, Olson TM, Marrs CF, Wigginton KR. 2017. Degradation of extracellular antibiotic resistance genes with UV254 treatment. Environmental Science & Technology 51:6185−6192

doi: 10.1021/acs.est.7b01120
[134]

Foroughi M, Khiadani M, Kakhki S, Kholghi V, Naderi K, et al. 2022. Effect of ozonation-based disinfection methods on the removal of antibiotic resistant bacteria and resistance genes (ARB/ARGs) in water and wastewater treatment: a systematic review. Science of The Total Environment 811:151404

doi: 10.1016/j.scitotenv.2021.151404
[135]

Liao H, Lu X, Rensing C, Friman VP, Geisen S, et al. 2018. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environmental Science & Technology 52:266−276

doi: 10.1021/acs.est.7b04483
[136]

Liao H, Zhao Q, Cui P, Chen Z, Yu Z, et al. 2019. Efficient reduction of antibiotic residues and associated resistance genes in tylosin antibiotic fermentation waste using hyperthermophilic composting. Environment International 133:105203

doi: 10.1016/j.envint.2019.105203
[137]

Feng M, Liu Y, Yang L, Li Z. 2023. Antibiotics and antibiotic resistance gene dynamics in the composting of antibiotic fermentation waste - a review. Bioresource Technology 390:129861

doi: 10.1016/j.biortech.2023.129861
[138]

Wang YZ, Li H, Chen QL, Pan T, Zhu YG, et al. 2024. Prevention and control strategies for antibiotic resistance: from species to community level. Soil Ecology Letters 6:230222

doi: 10.1007/s42832-023-0222-2
[139]

Xu Z, Zhao D, Lu J, Liu J, Dao G, et al. 2023. Multiple roles of nanomaterials along with their based nanotechnologies in the elimination and dissemination of antibiotic resistance. Chemical Engineering Journal 455:140927

doi: 10.1016/j.cej.2022.140927
[140]

Cameron SJ, Sheng J, Hosseinian F, Willmore WG. 2022. Nanoparticle effects on stress response pathways and nanoparticle-protein interactions. International Journal of Molecular Sciencesi 23:7962

doi: 10.3390/ijms23147962
[141]

Tao S, Chen H, Li N, Liang W. 2022. The application of the CRISPR-Cas system in antibiotic resistance. Infection and Drug Resistance 15:4155−4168

doi: 10.2147/idr.S370869
[142]

de la Fuente-Núñez C, Lu TK. 2017. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integrative Biology 9:109−122

doi: 10.1039/c6ib00140h
[143]

Okesanya OJ, Ahmed MM, Ogaya JB, Amisu BO, Ukoaka BM, et al. 2025. Reinvigorating AMR resilience: leveraging CRISPR-Cas technology potentials to combat the 2024 WHO bacterial priority pathogens for enhanced global health security-a systematic review. Tropical Medicine and Health 53:43

doi: 10.1186/s41182-025-00728-2
[144]

Zhao Y, Ye M, Zhang X, Sun M, Zhang Z, et al. 2019. Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Science of The Total Environment 657:918−925

doi: 10.1016/j.scitotenv.2018.11.457
[145]

Shuai X, Zhou Z, Ba X, Lin Y, Lin Z, et al. 2024. Bacteriophages: vectors of or weapons against the transmission of antibiotic resistance genes in hospital wastewater systems? Water Research 248:120833

doi: 10.1016/j.watres.2023.120833
[146]

Li Y, Hashsham SA, Chen FF, Sun H, Tang Q, et al. 2024. Engineered DNA scavenger for mitigating antibiotic resistance proliferation in wastewater treatment. Nature Water 2:758−769

doi: 10.1038/s44221-024-00289-4
[147]

Wang D, Zhou X, Fu Q, Li Y, Ni BJ, et al. 2025. Understanding bacterial ecology to combat antibiotic resistance dissemination. Trends in Biotechnology 43:1566−1582

doi: 10.1016/j.tibtech.2024.12.011
[148]

Mao X, Yin X, Yang Y, Che Y, Xu X, et al. 2024. Standardization in global environmental antibiotic resistance genes (ARGs) surveillance. Critical Reviews in Environmental Science and Technology 54:1633−1650

doi: 10.1080/10643389.2024.2344453
[149]

Zhang Z, Zhang L, Zhang G, Zhao Z, Wang H, et al. 2023. Deduplication improves cost-efficiency and yields of de novo assembly and binning of shotgun metagenomes in microbiome research. Microbiology Spectrum 11:e04282-22

doi: 10.1128/spectrum.04282-22