[1]

Achour Y, Ouammi A, Zejli D. 2021. Technological progresses in modern sustainable greenhouses cultivation as the path towards precision agriculture. Renewable and Sustainable Energy Reviews 147:111251

doi: 10.1016/j.rser.2021.111251
[2]

Yang X, Shu L, Chen J, Ferrag MA, Wu J, et al. 2021. A survey on smart agriculture: development modes, technologies, and security and privacy challenges. IEEE/CAA Journal of Automatica Sinica 8:273−302

doi: 10.1109/JAS.2020.1003536
[3]

Shu Y, Li D, Xie T, Zhao K, Zhou L, et al. 2025. Antibiotics-heavy metals combined pollution in agricultural soils: sources, fate, risks, and countermeasures. Green Energy & Environment 10:869−897

doi: 10.1016/j.gee.2024.07.007
[4]

Wang YF, Liu YJ, Fu YM, Xu JY, Zhang TL, et al. 2024. Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nature Communications 15:9788

doi: 10.1038/s41467-024-54237-7
[5]

Kumar V, Singh E, Singh S, Pandey A, Bhargava PC. 2023. Micro- and nano-plastics (MNPs) as emerging pollutant in ground water: environmental impact, potential risks, limitations and way forward towards sustainable management. Chemical Engineering Journal 459:141568

doi: 10.1016/j.cej.2023.141568
[6]

Xu L, Xu D, Wang K, Xiao J, Men J, et al. 2025. The increasing age of facility agriculture significantly enriched microplastics and affected soil bacterial communities. Journal of Hazardous Materials 495:138865

doi: 10.1016/j.jhazmat.2025.138865
[7]

Chen L, Yu L, Li Y, Han B, Zhang J, et al. 2022. Spatial distributions, compositional profiles, potential sources, and influencing factors of microplastics in soils from different agricultural farmlands in China: a national perspective. Environmental Science & Technology 56:16964−16974

doi: 10.1021/acs.est.2c07621
[8]

Zhang L, Xue W, Sun H, Sun Q, Hu Y, et al. 2025. Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers. Science of The Total Environment 961:178389

doi: 10.1016/j.scitotenv.2025.178389
[9]

Zeng Q, Sun J, Zhu L. 2019. Occurrence and distribution of antibiotics and resistance genes in greenhouse and open-field agricultural soils in China. Chemosphere 224:900−909

doi: 10.1016/j.chemosphere.2019.02.167
[10]

Zhang Y, Wang H, Hu M, Cai R, Miao Y, et al. 2024. Heavy metals potentially drive co-selection of antibiotic resistance genes by shifting soil bacterial communities in paddy soils along the middle and lower Yangtze River. Pedosphere 34:606−619

doi: 10.1016/j.pedsph.2023.01.012
[11]

Yan H, Wang Z, Weng Y, Pan H, Zhang L, et al. 2025. Characteristics and mechanisms of microplastics–heavy metals composite pollutants removal in the electrocoagulation process: study on PE microplastics and Cr(VI). Journal of Environmental Chemical Engineering 13:117103

doi: 10.1016/j.jece.2025.117103
[12]

Xiong Y, Zhao Z, Peng K, Zhai G, Huang X, et al. 2025. Microplastic interactions with co-existing pollutants in water environments: synergistic or antagonistic roles on their removal through current remediation technologies. Journal of Environmental Management 376:124355

doi: 10.1016/j.jenvman.2025.124355
[13]

Yang Y, Liu Y, Yu Z, Zhu G, Lin B, et al. 2025. Global industrial emissions of chlorinated and brominated polycyclic aromatic hydrocarbons. Nature Sustainability

doi: 10.1038/s41893-025-01656-z
[14]

Xu D, Jin T, Xi B, Gao H, Li X, et al. 2025. Distribution characteristics, influencing factors, and future prospects of microplastics derived from agricultural mulching film in farmland soil: a review. Current Opinion in Environmental Science & Health 47:100652

doi: 10.1016/j.coesh.2025.100652
[15]

Ren S, Wang K, Zhang J, Li J, Zhang H, et al. 2024. Potential sources and occurrence of macro-plastics and microplastics pollution in farmland soils: a typical case of China. Critical Reviews in Environmental Science and Technology 54:533−556

doi: 10.1080/10643389.2023.2259275
[16]

Zhang H, Huang Y, An S, Li H, Deng X, et al. 2022. Land-use patterns determine the distribution of soil microplastics in typical agricultural areas on the eastern Qinghai-Tibetan Plateau. Journal of Hazardous Materials 426:127806

doi: 10.1016/j.jhazmat.2021.127806
[17]

Liu H, Zhang Y, Yang J, Wang H, Li Y, et al. 2021. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of The Total Environment 767:144879

doi: 10.1016/j.scitotenv.2020.144879
[18]

Chi Z, Pi K, Wu Y, Xie X, Wang Y. 2024. Impact of long-term irrigation practices on distribution and speciation of arsenic in agricultural soil. Ecotoxicology and Environmental Safety 283:116825

doi: 10.1016/j.ecoenv.2024.116825
[19]

Sun J, Zhang D, Peng S, Yang X, Hua Q, et al. 2024. Occurrence and human exposure risk of antibiotic resistance genes in tillage soils of dryland regions: a case study of northern Ningxia Plain, China. Journal of Hazardous Materials 480:135790

doi: 10.1016/j.jhazmat.2024.135790
[20]

Li Y, Kong F, Li S, Wang J, Hu J, et al. 2023. Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. Journal of Hazardous Materials 456:131706

doi: 10.1016/j.jhazmat.2023.131706
[21]

Zhang H, Liu W, Xiong Y, Li G, Cui J, et al. 2024. Effects of dissolved organic matter on distribution characteristics of heavy metals and their interactions with microorganisms in soil under long-term exogenous effects. Science of The Total Environment 947:174565

doi: 10.1016/j.scitotenv.2024.174565
[22]

Cusworth SJ, Davies WJ, McAinsh MR, Gregory AS, Storkey J, et al. 2024. Agricultural fertilisers contribute substantially to microplastic concentrations in UK soils. Communications Earth & Environment 5:7

doi: 10.1038/s43247-023-01172-y
[23]

Khoshmanesh M, Sanati AM, Ramavandi B. 2024. Influence of cephalexin on cadmium adsorption onto microplastic particles in water: human health risk evaluation. Heliyon 10:e37775

doi: 10.1016/j.heliyon.2024.e37775
[24]

Lu XM, Lu PZ, Liu XP. 2020. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Science of The Total Environment 709:136276

doi: 10.1016/j.scitotenv.2019.136276
[25]

Li M, Jia H, Gao Q, Han S, Yu Y, et al. 2023. Influence of aged and pristine polyethylene microplastics on bioavailability of three heavy metals in soil: toxic effects to earthworms (Eisenia fetida). Chemosphere 311:136833

doi: 10.1016/j.chemosphere.2022.136833
[26]

Zhang S, Han B, Sun Y, Wang F. 2020. Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials 388:121775

doi: 10.1016/j.jhazmat.2019.121775
[27]

de Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, et al. 2019. Microplastics can change soil properties and affect plant performance. Environmental Science & Technology 53:6044−6052

doi: 10.1021/acs.est.9b01339
[28]

Iqbal B, Zhao T, Yin W, Zhao X, Xie Q, et al. 2023. Impacts of soil microplastics on crops: a review. Applied Soil Ecology 181:104680

doi: 10.1016/j.apsoil.2022.104680
[29]

Huang F, Chen L, Yang X, Jeyakumar P, Wang Z, et al. 2024. Unveiling the impacts of microplastics on cadmium transfer in the soil-plant-human system: a review. Journal of Hazardous Materials 477:135221

doi: 10.1016/j.jhazmat.2024.135221
[30]

Erdem H, Gence CÇ, Öztürk M, Buhan E, Kholikulov ST, et al. 2025. Microplastics in soil increase cadmium toxicity: implications for plant growth and nutrient imbalance. Water, Air, & Soil Pollution 236:575

doi: 10.1007/s11270-025-08222-5
[31]

Liu YQ, Chen Y, Ren XM, Li YY, Zhang YJ, et al. 2023. Plant growth-promoting bacteria modulate gene expression and induce antioxidant tolerance to alleviate synergistic toxicity from combined microplastic and Cd pollution in sorghum. Ecotoxicology and Environmental Safety 264:115439

doi: 10.1016/j.ecoenv.2023.115439
[32]

Song X, Jin J, Li H, Wang F, Liu J, et al. 2023. Kaolinite reduced Cd accumulation in peanut and remediate soil contaminated with both microplastics and cadmium. Ecotoxicology and Environmental Safety 266:115580

doi: 10.1016/j.ecoenv.2023.115580
[33]

Yang L, Zhang Y, Kang S, Wang Z, Wu C. 2021. Microplastics in soil: a review on methods, occurrence, sources, and potential risk. Science of The Total Environment 780:146546

doi: 10.1016/j.scitotenv.2021.146546
[34]

Liu B, Zhao S, Qiu T, Cui Q, Yang Y, et al. 2024. Interaction of microplastics with heavy metals in soil: mechanisms, influencing factors and biological effects. Science of The Total Environment 918:170281

doi: 10.1016/j.scitotenv.2024.170281
[35]

Huang X, Zhao X, Fu L, Yang G, Luo L. 2024. The distribution and key influential factors of antibiotic resistance genes in agricultural soils polluted by multiple heavy metals. Environmental Geochemistry and Health 46:385

doi: 10.1007/s10653-024-02164-3
[36]

Guo Y, Qiu T, Gao M, Sun Y, Cheng S, et al. 2021. Diversity and abundance of antibiotic resistance genes in rhizosphere soil and endophytes of leafy vegetables: focusing on the effect of the vegetable species. Journal of Hazardous Materials 415:125595

doi: 10.1016/j.jhazmat.2021.125595
[37]

Shen C, He M, Zhang J, Liu J, Su J, et al. 2023. Effects of the coexistence of antibiotics and heavy metals on the fate of antibiotic resistance genes in chicken manure and surrounding soils. Ecotoxicology and Environmental Safety 263:115367

doi: 10.1016/j.ecoenv.2023.115367
[38]

Ding Y, Wang J, Chen Y, Yang Y, Liu X. 2025. Natural transformation of antibiotic resistance genes and the enhanced adaptability in bacterial biofilm under antibiotic and heavy metal stresses. Journal of Hazardous Materials 490:137740

doi: 10.1016/j.jhazmat.2025.137740
[39]

Fu Y, Zhu Y, Dong H, Li J, Zhang W, et al. 2023. Effects of heavy metals and antibiotics on antibiotic resistance genes and microbial communities in soil. Process Safety and Environmental Protection 169:418−427

doi: 10.1016/j.psep.2022.11.020
[40]

Ni N, Qiu J, Ge W, Guo X, Zhu D, et al. 2025. Fibrous and fragmented microplastics discharged from sewage amplify health risks associated with antibiotic resistance genes in aquatic environments. Environmental Science & Technology 59:15919−15930

doi: 10.1021/acs.est.5c01335
[41]

Wu C, Song X, Wang D, Ma Y, Ren X, et al. 2023. Tracking antibiotic resistance genes in microplastic-contaminated soil. Chemosphere 312:137235

doi: 10.1016/j.chemosphere.2022.137235
[42]

Wang Y, Chen SS, Zheng G, Zhou S, Zhou Y. 2025. Risk assessment and zoning of soil microplastics in a typical megacity, China. Journal of Hazardous Materials 495:138870

doi: 10.1016/j.jhazmat.2025.138870
[43]

Luo T, Dai X, Wei W, Xu Q, Ni BJ. 2023. Microplastics enhance the prevalence of antibiotic resistance genes in anaerobic sludge digestion by enriching antibiotic-resistant bacteria in surface biofilm and facilitating the vertical and horizontal gene transfer. Environmental Science & Technology 57:14611−14621

doi: 10.1021/acs.est.3c02815
[44]

Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJGM, et al. 2020. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nature Sustainability 3:929−937

doi: 10.1038/s41893-020-0567-9
[45]

Chen X, Zhang H, Wong CUI. 2024. Spatial distribution characteristics and pollution evaluation of soil heavy metals in Wulongdong National Forest Park. Scientific Reports 14:8880

doi: 10.1038/s41598-024-58259-5
[46]

Zhao S, Zhang H, Zhu Y, Xing Z, Chen W, et al. 2025. Residual heavy metals and antibiotic pollution in abandoned breeding areas along the northeast coast of Hainan Island, China. Marine Pollution Bulletin 212:117518

doi: 10.1016/j.marpolbul.2024.117518
[47]

Wu X, Zhong C, Wang T, Zou X. 2023. Assessment on the pollution level and risk of microplastics on bathing beaches: a case study of Liandao, China. Environmental Monitoring and Assessment 195:383

doi: 10.1007/s10661-023-10994-4
[48]

Lestari P, Nugroho BDA, Mawandha HG, Setyawan C, Riskawati E, et al. 2025. Spatial distribution of microplastic pollution and its relation to pollution index-based water quality status in Progo River, Indonesia. Emerging Contaminants 11:100510

doi: 10.1016/j.emcon.2025.100510
[49]

Zhao G, Ma Y, Liu Y, Cheng J, Wang X. 2022. Source analysis and ecological risk assessment of heavy metals in farmland soils around heavy metal industry in Anxin County. Scientific Reports 12:10562

doi: 10.1038/s41598-022-13977-6
[50]

Gao J, Zhang D, Proshad R, Uwiringiyimana E, Wang Z. 2021. Assessment of the pollution levels of potential toxic elements in urban vegetable gardens in southwest China. Scientific Reports 11:22824

doi: 10.1038/s41598-021-02069-6
[51]

Kowalska JB, Mazurek R, Gąsiorek M, Zaleski T. 2018. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-a review. Environmental Geochemistry and Health 40:2395−2420

doi: 10.1007/s10653-018-0106-z
[52]

Li R, Yuan Y, Li C, Sun W, Yang M, et al. 2020. Environmental health and ecological risk assessment of soil heavy metal pollution in the coastal cities of estuarine bay-a case study of Hangzhou Bay, China. Toxics 8:75

doi: 10.3390/toxics8030075
[53]

Sabet Aghlidi P, Cheraghi M, Lorestani B, Sobhanardakani S, Merrikhpour H. 2020. Analysis, spatial distribution and ecological risk assessment of arsenic and some heavy metals of agricultural soils, case study: South of Iran. Journal of Environmental Health Science & Engineering 18:665−676

doi: 10.1007/s40201-020-00492-x
[54]

Liu D, Wang J, Yu H, Gao H, Xu W. 2021. Evaluating ecological risks and tracking potential factors influencing heavy metals in sediments in an urban river. Environmental Sciences Europe 33:42

doi: 10.1186/s12302-021-00487-x
[55]

Peng J, Chen Y, Xia Q, Rong G, Zhang J. 2021. Ecological risk and early warning of soil compound pollutants (HMs, PAHs, PCBs and OCPs) in an industrial city, Changchun, China. Environmental Pollution 272:116038

doi: 10.1016/j.envpol.2020.116038
[56]

Pejman A, Nabi Bidhendi G, Ardestani M, Saeedi M, Baghvand A. 2015. A new index for assessing heavy metals contamination in sediments: a case study. Ecological Indicators 58:365−373

doi: 10.1016/j.ecolind.2015.06.012
[57]

Liao J, Cui X, Feng H, Yan S. 2022. Environmental background values and ecological risk assessment of heavy metals in watershed sediments: a comparison of assessment methods. Water 14:51

doi: 10.3390/w14010051
[58]

Raveendran A, Renjith VR, Madhu G. 2022. A comprehensive review on dynamic risk analysis methodologies. Journal of Loss Prevention in the Process Industries 76:104734

doi: 10.1016/j.jlp.2022.104734
[59]

Ejaz U, Khan SM, Ali Shah SF, Khalid N, Jehangir S, et al. 2025. Integrative data-driven analytics for assessing ecological and human health risks of soil heavy metal contamination. Journal of Hazardous Materials Advances 17:100596

doi: 10.1016/j.hazadv.2025.100596
[60]

Li Y, Ling W, Yang J, Xing Y. 2025. Risk assessment of microplastics in humans: distribution, exposure, and toxicological effects. Polymers 17:1699

doi: 10.3390/polym17121699
[61]

Ling J, Yan Z, Liu X, Men S, Wei C, et al. 2024. Health risk assessment and development of human health ambient water quality criteria for PCBs in Taihu Basin, China. Science of The Total Environment 920:170669

doi: 10.1016/j.scitotenv.2024.170669
[62]

Rigi P, Kamani H, Ansari H, Mohammadi L, Dargahi A. 2025. Health risk assessment of polycyclic aromatic hydrocarbon compounds (PAHs) in grilled meats in Zahedan city of Iran. Scientific Reports 15:24267

doi: 10.1038/s41598-025-03807-w
[63]

Chen L, Xie M, Li G, Lin S, Wang D, et al. 2025. A spatial source-oriented and probability-based risk-assessment framework for heavy metal and PAH contamination of urban soils in Guangzhou, China. Journal of Hazardous Materials 482:136500

doi: 10.1016/j.jhazmat.2024.136500
[64]

Lane T, Wardani I, Koelmans AA. 2025. Exposure scenarios for human health risk assessment of nano- and microplastic particles. Microplastics and Nanoplastics 5:28

doi: 10.1186/s43591-025-00134-9
[65]

Xi X, Ding D, Zhou H, Baihetiyaer B, Sun H, et al. 2022. Interactions of pristine and aged nanoplastics with heavy metals: enhanced adsorption and transport in saturated porous media. Journal of Hazardous Materials 437:129311

doi: 10.1016/j.jhazmat.2022.129311
[66]

Yang Z, DeLoid GM, Zarbl H, Baw J, Demokritou P. 2023. Micro- and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NanoImpact 32:100481

doi: 10.1016/j.impact.2023.100481
[67]

He L, Shao Y, Li S, Nie Y, Chu Y, et al. 2025. Topologically entangled network polymer electrolyte with ionophilic–protonation dual side chains for high-voltage lithium-metal batteries. Angewandte Chemie International Edition 64:e202507222

doi: 10.1002/anie.202507222
[68]

Qasem NAA, Mohammed RH, Lawal DU. 2021. Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water 4:36

doi: 10.1038/s41545-021-00127-0
[69]

Khalid N, Aqeel M, Noman A, Khan SM, Akhter N. 2021. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environmental Pollution 290:118104

doi: 10.1016/j.envpol.2021.118104
[70]

Wang Y. 2025. Physicochemical properties and combined toxic effects of micro- and nanoplastics on gut and gut-organ axes. Trends in Food Science & Technology 165:105265

doi: 10.1016/j.jpgs.2025.105265
[71]

Feng M, Zhang M, Cai P, Wu Y, Fu Q, et al. 2026. Increased microbial extracellular polymeric substances as a key factor in deep soil organic carbon accumulation. Soil Biology and Biochemistry 212:109998

doi: 10.1016/j.soilbio.2025.109998
[72]

Shao B, Dong H, Zhou G, Ma J, Sharma VK, et al. 2022. Degradation of organic contaminants by reactive iron/manganese species: progress and challenges. Water Research 221:118765

doi: 10.1016/j.watres.2022.118765
[73]

Gao FZ, Hu LX, Liu YS, Yang HY, He LY, et al. 2025. Unveiling the prevalence of metal resistance genes and their associations with antibiotic resistance genes in heavy metal-contaminated rivers. Water Research 281:123699

doi: 10.1016/j.watres.2025.123699
[74]

Balta I, Lemon J, Gadaj A, Cretescu I, Stef D, et al. 2025. The interplay between antimicrobial resistance, heavy metal pollution, and the role of microplastics. Frontiers in Microbiology 16:1550587

doi: 10.3389/fmicb.2025.1550587
[75]

Zhang Y, Zhang H, Zhang Z, Liu C, Sun C, et al. 2018. pH effect on heavy metal release from a polluted sediment. Journal of Chemistry 2018:7597640

doi: 10.1155/2018/7597640
[76]

Liu W, Xu Y, Slaveykova VI. 2023. Oxidative stress induced by sub-lethal exposure to copper as a mediator in development of bacterial resistance to antibiotics. Science of The Total Environment 860:160516

doi: 10.1016/j.scitotenv.2022.160516
[77]

Liu ZT, Ma RA, Zhu D, Konstantinidis KT, Zhu YG, et al. 2024. Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nature Communications 15:5168

doi: 10.1038/s41467-024-49165-5
[78]

Tavşanoğlu ÜN, Akca G, Pekmez T, Başaran Kankılıç G, Çırak T, et al. 2025. Increasing microplastics pollution: an emerging vector for potentially pathogenic bacteria in the environment. Water Research 274:123142

doi: 10.1016/j.watres.2025.123142
[79]

Jia J, Liu Q, Zhao E, Li X, Xiong X, et al. 2024. Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment. Eco-Environment & Health 3:516−528

doi: 10.1016/j.eehl.2024.05.003
[80]

Gross N, Muhvich J, Ching C, Gomez B, Horvath E, et al. 2025. Effects of microplastic concentration, composition, and size on Escherichia coli biofilm-associated antimicrobial resistance. Applied and Environmental Microbiology 91:e0228224

doi: 10.1128/aem.02282-24
[81]

Wang S, Al-Hasni NS, Liu Z, Liu A. 2024. Multifaceted aquatic environmental differences between nanoplastics and microplastics: behavior and fate. Environment & Health 2:688−701

doi: 10.1021/envhealth.4c00013
[82]

Wang J, Peng C, Dai Y, Li Y, Jiao S, et al. 2022. Slower antibiotics degradation and higher resistance genes enrichment in plastisphere. Water Research 222:118920

doi: 10.1016/j.watres.2022.118920
[83]

Rillig MC, Kim SW, Zhu YG. 2024. The soil plastisphere. Nature Reviews Microbiology 22:64−74

doi: 10.1038/s41579-023-00967-2
[84]

Liu X, Wei W, Chen Z, Wu L, Duan H, et al. 2025. The threats of micro- and nanoplastics to aquatic ecosystems and water health. Nature Water 3:764−781

doi: 10.1038/s44221-025-00464-1
[85]

Malla MA, Nomalihle M, Featherston J, Kumar A, Amoah ID, et al. 2025. Comprehensive profiling and risk assessment of antibiotic resistomes in surface water and plastisphere by integrated shotgun metagenomics. Journal of Hazardous Materials 487:137180

doi: 10.1016/j.jhazmat.2025.137180
[86]

Hu X, Gu H, Sun X, Wang Y, Liu J, et al. 2023. Distinct influence of conventional and biodegradable microplastics on microbe-driving nitrogen cycling processes in soils and plastispheres as evaluated by metagenomic analysis. Journal of Hazardous Materials 451:131097

doi: 10.1016/j.jhazmat.2023.131097
[87]

Wang X, Li H, Chen Y, Meng X, Dieketseng MY, et al. 2022. A neglected risk of nanoplastics as revealed by the promoted transformation of plasmid-borne ampicillin resistance gene by Escherichia coli. Environmental Microbiology 24:4946−4959

doi: 10.1111/1462-2920.16178
[88]

Li H, Ding Y, Xu Y, Liu W. 2025. Multi-omics insights into surface charge effects to decode the interplay of nanoplastics and bacterial antibiotic resistance. iMeta 4:e70056

doi: 10.1002/imt2.70056
[89]

Padhye LP, Srivastava P, Jasemizad T, Bolan S, Hou D, et al. 2023. Contaminant containment for sustainable remediation of persistent contaminants in soil and groundwater. Journal of Hazardous Materials 455:131575

doi: 10.1016/j.jhazmat.2023.131575
[90]

Zhang L, Chen Y, Ma C, Liu L, Pan J, et al. 2020. Improving heavy metals removal, dewaterability and pathogen removal of waste activated sludge using enhanced chemical leaching. Journal of Cleaner Production 271:122512

doi: 10.1016/j.jclepro.2020.122512
[91]

Faisal AAH, Ahmed DN, Rezakazemi M, Sivarajasekar N, Sharma G. 2021. Cost-effective composite prepared from sewage sludge waste and cement kiln dust as permeable reactive barrier to remediate simulated groundwater polluted with tetracycline. Journal of Environmental Chemical Engineering 9:105194

doi: 10.1016/j.jece.2021.105194
[92]

Kong T, Sun X, Gao P, Huang W, Guan X, et al. 2025. Investigation of the ecological roles of the plastisphere microbiome in metal-contaminated river sediments: elucidation of their metabolic versatilities for plastics mineralization and metal resistance. Water Research 286:124170

doi: 10.1016/j.watres.2025.124170
[93]

Das S, Sultana KW, Ndhlala AR, Mondal M, Chandra I. 2023. Heavy metal pollution in the environment and its impact on health: exploring green technology for remediation. Environmental Health Insights 17:11786302231201259

doi: 10.1177/11786302231201259
[94]

Ruan Z, Chen K, Cao W, Meng L, Yang B, et al. 2024. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling. Nature Communications 15:4694

doi: 10.1038/s41467-024-49098-z
[95]

Saeed MU, Hussain N, Sumrin A, Shahbaz A, Noor S, et al. 2022. Microbial bioremediation strategies with wastewater treatment potentialities–a review. Science of The Total Environment 818:151754

doi: 10.1016/j.scitotenv.2021.151754
[96]

Zhu Y, Gu H, Li H, Lam SS, Verma M, et al. 2024. Phytoremediation of contaminants in urban soils: a review. Environmental Chemistry Letters 22:355−371

doi: 10.1007/s10311-023-01663-6
[97]

Chowdhury KF, Hall RJ, McNally A, Carter LJ. 2023. Phytoremediation as a tool to remove drivers of antimicrobial resistance in the aquatic environment. Reviews of Environmental Contamination and Toxicology 261:16

doi: 10.1007/s44169-023-00039-9
[98]

Cui E, Cui B, Fan X, Li S, Gao F. 2021. Ryegrass (Lolium multiflorum L.) and Indian mustard (Brassica juncea L.) intercropping can improve the phytoremediation of antibiotics and antibiotic resistance genes but not heavy metals. Science of The Total Environment 784:147093

doi: 10.1016/j.scitotenv.2021.147093
[99]

Van Nevel L, Mertens J, Oorts K, Verheyen K. 2007. Phytoextraction of metals from soils: how far from practice? Environmental Pollution 150:34−40

doi: 10.1016/j.envpol.2007.05.024
[100]

Coakley S, Petti C. 2021. Impacts of the invasive Impatiens glandulifera: lessons learned from one of Europe's top invasive species. Biology 10:619

doi: 10.3390/biology10070619
[101]

Huang Y, Liu Q, Jia W, Yan C, Wang J. 2020. Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution 260:114096

doi: 10.1016/j.envpol.2020.114096
[102]

Zhang GS, Liu YF. 2018. The distribution of microplastics in soil aggregate fractions in southwestern China. Science of The Total Environment 642:12−20

doi: 10.1016/j.scitotenv.2018.06.004
[103]

Kasirajan S, Ngouajio M. 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 32:501−529

doi: 10.1007/s13593-011-0068-3
[104]

Zhong L, Yang S, Chu X, Sun Z, Li J. 2024. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Science of The Total Environment 907:168104

doi: 10.1016/j.scitotenv.2023.168104
[105]

Wu RT, Cai YF, Chen YX, Yang YW, Xing SC, et al. 2021. Occurrence of microplastic in livestock and poultry manure in South China. Environmental Pollution 277:116790

doi: 10.1016/j.envpol.2021.116790
[106]

Li B, Jiang L, Johnson T, Wang G, Sun W, et al. 2025. Global health risks lurking in livestock resistome. Science Advances 11:eadt8073

doi: 10.1126/sciadv.adt8073
[107]

Zhang Y, Wang N, Wan J, Jousset A, Jiang G, et al. 2024. Exploring the antibiotic resistance genes removal dynamics in chicken manure by composting. Bioresource Technology 410:131309

doi: 10.1016/j.biortech.2024.131309
[108]

Xia H, Liang D, Chen F, Liao MA, Lin L, et al. 2018. Effects of mutual intercropping on cadmium accumulation by the accumulator plants Conyza canadensis, Cardamine hirsuta, and Cerastium glomeratum. International Journal of Phytoremediation 20:855−861

doi: 10.1080/15226514.2018.1438356
[109]

Zhang W, Zhang TT, Machado RAR, Dai CC. 2025. Intercropping-induced leaf metabolic changes increase plant resistance to herbivory. Plant and Soil 506:245−262

doi: 10.1007/s11104-023-06437-1
[110]

Huang Y, Hu B, Li T, Liu T, Zhang Z, et al. 2025. Intercropping and nano zinc oxide application enhance plant resistance and alleviate pesticide stress by altering the soil microenvironment. Journal of Agricultural and Food Chemistry 73:14938−14949

doi: 10.1021/acs.jafc.5c02607
[111]

Zhang Y, Fu H, Chen X, Shi S, Liu N, et al. 2024. Surface wettability control and electron transport regulation in zerovalent iron for enhanced removal of emerging polystyrene microplastics-heavy metal contaminants. Water Research 256:121602

doi: 10.1016/j.watres.2024.121602
[112]

Wang Y, Wang X, Li Y, Liu Y, Sun Y, et al. 2022. Effects of struvite-loaded zeolite amendment on the fate of copper, tetracycline and antibiotic resistance genes in microplastic-contaminated soil. Chemical Engineering Journal 430:130478

doi: 10.1016/j.cej.2021.130478
[113]

Li H, Wang X, Tan L, Li Q, Zhang C, et al. 2022. Coconut shell and its biochar as fertilizer amendment applied with organic fertilizer: efficacy and course of actions on eliminating antibiotic resistance genes in agricultural soil. Journal of Hazardous Materials 437:129322

doi: 10.1016/j.jhazmat.2022.129322
[114]

Li Z, Wang X, Zhang B, Li B, Du H, et al. 2023. Transmission mechanisms of antibiotic resistance genes in arsenic-contaminated soil under sulfamethoxazole stress. Environmental Pollution 326:121488

doi: 10.1016/j.envpol.2023.121488