| [1] |
Wang P, Luo Y, Huang J, Gao S, Zhu G, et al. 2020. The genome evolution and domestication of tropical fruit mango. |
| [2] |
Tharanathan RN, Yashoda HM, Prabha TN. 2006. Mango (Mangifera indica L.), "The king of fruits" − an overview. |
| [3] |
Zhang D, Wang C, Li XL. 2019. Yield gap and production constraints of mango (Mangifera indica) cropping systems in Tianyang County, China. |
| [4] |
Sawangchote P, Grote PJ, Dilcher DL. 2009. Tertiary leaf fossils of Mangifera (Anacardiaceae) from Li Basin, Thailand as examples of the utility of leaf marginal venation characters. |
| [5] |
Jahurul MHA, Zaidul ISM, Ghafoor K, Al-Juhaimi FY, Nyam KL, et al. 2015. Mango (Mangifera indica L.) by-products and their valuable components: a review. |
| [6] |
Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE. 2015. Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. |
| [7] |
Singh VP, Singh S, Prasad SM, Parihar P. 2017. UV-B radiation: From Environmental Stressor to Regulator of Plant Growth. Chichester, UK: John Wiley & Sons Ltd. pp. 1−319 doi: 10.1002/9781119143611 |
| [8] |
Faizan M, Hayat S, Ahmed SM. 2023. Reactive Oxygen Species: Prospects in Plant Metabolism. Singapore: Springer Nature. 290 pp. doi: 10.1007/978-981-19-9794-5 |
| [9] |
Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. |
| [10] |
Noctor G, Foyer CH. 1998. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. |
| [11] |
Suzuki N, Koussevitzky S, Mittler R, Miller G. 2012. ROS and redox signalling in the response of plants to abiotic stress. |
| [12] |
Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, et al. 2002. Regulation and function of ascorbate peroxidase isoenzymes. |
| [13] |
Maruta T, Sawa Y, Shigeoka S, Ishikawa T. 2016. Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? |
| [14] |
Jardim-Messeder D, Caverzan A, Bastos GA, Galhego V, Souza-Vieira Y, et al. 2022. Genome-wide, evolutionary, and functional analyses of ascorbate peroxidase (APX) family in Poaceae species. |
| [15] |
Yoshimura K, Ishikawa T. 2024. Physiological function and regulation of ascorbate peroxidase isoforms. |
| [16] |
Panchuk II, Volkov RA, Schöffl F. 2002. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. |
| [17] |
Chew O, Whelan J, Millar AH. 2003. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. |
| [18] |
Mittler R, Poulos TL. 2005. Ascorbate peroxidase. In Antioxidants and Reactive Oxygen Species in Plants, ed. Smirnoff N. UK: Blackwell Publishing Ltd. pp. 87−100 doi: 10.1002/9780470988565 |
| [19] |
Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M. 2004. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. |
| [20] |
Teixeira FK, Menezes-Benavente L, Galvão VC, Margis R, Margis-Pinheiro M. 2006. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. |
| [21] |
Najami N, Janda T, Barriah W, Kayam G, Tal M, et al. 2008. Ascorbate peroxidase gene family in tomato: its identification and characterization. |
| [22] |
Tao C, Jin X, Zhu L, Xie Q, Wang X, et al. 2018. Genome-wide investigation and expression profiling of APX gene family in Gossypium hirsutum provide new insights in redox homeostasis maintenance during different fiber development stages. |
| [23] |
Akbudak MA, Filiz E, Vatansever R, Kontbay K. 2018. Genome-wide identification and expression profiling of ascorbate peroxidase (APX) and glutathione peroxidase (GPX) genes under drought stress in sorghum (Sorghum bicolor L.). |
| [24] |
Liao GL, Liu Q, Li YQ, Zhong M, Huang CH, et al. 2020. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). |
| [25] |
Raza A, Sharif Y, Chen K, Wang L, Fu H, et al. 2022. Genome-wide characterization of ascorbate peroxidase gene family in peanut (Arachis hypogea L.) revealed their crucial role in growth and multiple stress tolerance. |
| [26] |
Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. |
| [27] |
Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, et al. 2004. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. |
| [28] |
Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce JC, et al. 2019. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. |
| [29] |
Tahir H, Sajjad M, Qian M, Zeeshan Ul Haq M, Tahir A, et al. 2024. Glutathione and ascorbic acid accumulation in mango pulp under enhanced UV-B based on transcriptome. |
| [30] |
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, et al. 2021. Expasy, the Swiss bioinformatics resource portal, as designed by its users. |
| [31] |
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. |
| [32] |
Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. |
| [33] |
Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, et al. 2023. The conserved domain database in 2023. |
| [34] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. |
| [35] |
Chen Q, Han Z, Jiang H, Tian D, Yang S. 2010. Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. |
| [36] |
Tahir Ul Qamar M, Sadaqat M, Zhu XT, Li H, Huang X, et al. 2023. Comparative genomics profiling revealed multi-stress responsive roles of the CC-NBS-LRR genes in three mango cultivars. |
| [37] |
Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. |
| [38] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. |
| [39] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. |
| [40] |
Li B, Zhang L, Zhu L, Cao Y, Dou Z, et al. 2021. HDAC5 promotes intestinal sepsis via the Ghrelin/E2F1/NF-κB axis. |
| [41] |
Tahir H, Gao Y, Sajjad M, Qian M, Wei L, et al. 2025. A genome-wide analysis of ascorbate oxidase gene family and hormonal activity in mango exposed to enhanced UV-B radiation. |
| [42] |
Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. |
| [43] |
Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. |
| [44] |
Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, et al. 2020. Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. |
| [45] |
Liu YJ, Yuan Y, Liu YY, Liu Y, Fu JJ, et al. 2012. Gene families of maize glutathione–ascorbate redox cycle respond differently to abiotic stresses. |
| [46] |
Wu B, Li L, Qiu T, Zhang X, Cui S. 2018. Cytosolic APX2 is a pleiotropic protein involved in H2O2 homeostasis, chloroplast protection, plant architecture and fertility maintenance. |
| [47] |
Ribeiro CW, Korbes AP, Garighan JA, Jardim-Messeder D, Carvalho FEL, et al. 2017. Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. |
| [48] |
Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, et al. 2021. Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress. |
| [49] |
Wang S, Peng J, Ma J, Xu J. 2016. Protein secondary structure prediction using deep convolutional neural fields. |
| [50] |
Numan M, Bukhari SA, Rehman MU, Mustafa G, Sadia B. 2021. Phylogenetic analyses, protein modeling and active site prediction of two pathogenesis related (PR2 and PR3) genes from bread wheat. |
| [51] |
Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in epigenetic regulation. |
| [52] |
Maqsood H, Ahad A, Khan S, Gul A, Mehboob M, et al. 2024. Genome engineering in barley. In Targeted Genome Engineering via CRISPR/Cas9 in Plants, ed. Gul A. Amsterdam: Elsevier. pp. 257−72 doi: 10.1016/b978-0-443-26614-0.00007-2 |
| [53] |
Sajjad M, Jiao J, Tahir H, Wei L, Ma W, et al. 2025. Genome-wide identification and expression profiling of pyruvate kinase genes in litchi under calcium-magnesium foliar treatment. |
| [54] |
Verma D, Upadhyay SK, Singh K. 2022. Characterization of APX and APX-R gene family in Brassica juncea and B. rapa for tolerance against abiotic stresses. |
| [55] |
Pražnikar J. 2023. Using graphlet degree vectors to predict atomic displacement parameters in protein structures. |
| [56] |
Zaman QU, Hussain MA, Khan LU, Hui L, Khan D, et al. 2023. Genome-wide identification and expression profiling of APX gene family under multifactorial stress combinations and melatonin-mediated tolerance in pitaya. |
| [57] |
Li Y, Xiao L, Zhao Z, Zhao H, Du D. 2023. Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L. |
| [58] |
Murat F, Van de Peer Y, Salse J. 2012. Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. |
| [59] |
Liang Z, Xu H, Qi H, Fei Y, Cui J. 2024. Genome-wide identification and analysis of ascorbate peroxidase (APX) gene family in hemp (Cannabis sativa L.) under various abiotic stresses. |
| [60] |
Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. |
| [61] |
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, et al. 2024. Regulatory dynamics of plant hormones and transcription factors under salt stress. |
| [62] |
Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, et al. 2023. Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. |
| [63] |
Guan Q, Wang Z, Wang X, Takano T, Liu S. 2015. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. |
| [64] |
Yan H, Li Q, Park SC, Wang X, Liu YJ, et al. 2016. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. |
| [65] |
Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, et al. 2017. Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. |
| [66] |
Zhou H, Yu L, Liu S, Zhu A, Yang Y, et al. 2023. Transcriptome comparison analyses in UV-B induced AsA accumulation of Lactuca sativa L. |
| [67] |
Liu P, Li Q, Gao Y, Wang H, Chai L, et al. 2019. A new perspective on the effect of UV-B on L-ascorbic acid metabolism in cucumber seedlings. |