[1]

Wang P, Luo Y, Huang J, Gao S, Zhu G, et al. 2020. The genome evolution and domestication of tropical fruit mango. Genome Biology 21:60

doi: 10.1186/s13059-020-01959-8
[2]

Tharanathan RN, Yashoda HM, Prabha TN. 2006. Mango (Mangifera indica L.), "The king of fruits" − an overview. Food Reviews International 22:95−123

doi: 10.1080/87559120600574493
[3]

Zhang D, Wang C, Li XL. 2019. Yield gap and production constraints of mango (Mangifera indica) cropping systems in Tianyang County, China. Journal of Integrative Agriculture 18:1726−36

doi: 10.1016/S2095-3119(18)62099-4
[4]

Sawangchote P, Grote PJ, Dilcher DL. 2009. Tertiary leaf fossils of Mangifera (Anacardiaceae) from Li Basin, Thailand as examples of the utility of leaf marginal venation characters. American Journal of Botany 96:2048−61

doi: 10.3732/ajb.0900086
[5]

Jahurul MHA, Zaidul ISM, Ghafoor K, Al-Juhaimi FY, Nyam KL, et al. 2015. Mango (Mangifera indica L.) by-products and their valuable components: a review. Food Chemistry 183:173−80

doi: 10.1016/j.foodchem.2015.03.046
[6]

Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE. 2015. Plant survival in a changing environment: the role of nitric oxide in plant responses to abiotic stress. Frontiers in Plant Science 6:977

doi: 10.3389/fpls.2015.00977
[7]

Singh VP, Singh S, Prasad SM, Parihar P. 2017. UV-B radiation: From Environmental Stressor to Regulator of Plant Growth. Chichester, UK: John Wiley & Sons Ltd. pp. 1−319 doi: 10.1002/9781119143611

[8]

Faizan M, Hayat S, Ahmed SM. 2023. Reactive Oxygen Species: Prospects in Plant Metabolism. Singapore: Springer Nature. 290 pp. doi: 10.1007/978-981-19-9794-5

[9]

Foyer CH, Halliwell B. 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21−25

doi: 10.1007/BF00386001
[10]

Noctor G, Foyer CH. 1998. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Annual Review of Plant Biology 49:249−79

doi: 10.1146/annurev.arplant.49.1.249
[11]

Suzuki N, Koussevitzky S, Mittler R, Miller G. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant, Cell & Environment 35:259−70

doi: 10.1111/j.1365-3040.2011.02336.x
[12]

Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, et al. 2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany 53:1305−19

doi: 10.1093/jexbot/53.372.1305
[13]

Maruta T, Sawa Y, Shigeoka S, Ishikawa T. 2016. Diversity and evolution of ascorbate peroxidase functions in chloroplasts: more than just a classical antioxidant enzyme? Plant & Cell Physiology 57:1377−86

doi: 10.1093/pcp/pcv203
[14]

Jardim-Messeder D, Caverzan A, Bastos GA, Galhego V, Souza-Vieira Y, et al. 2022. Genome-wide, evolutionary, and functional analyses of ascorbate peroxidase (APX) family in Poaceae species. Genetics and Molecular Biology 46:e20220153

doi: 10.1590/1678-4685-GMB-2022-0153
[15]

Yoshimura K, Ishikawa T. 2024. Physiological function and regulation of ascorbate peroxidase isoforms. Journal of Experimental Botany 75:2700−15

doi: 10.1093/jxb/erae061
[16]

Panchuk II, Volkov RA, Schöffl F. 2002. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant physiology 129:838−53

doi: 10.1104/pp.001362
[17]

Chew O, Whelan J, Millar AH. 2003. Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. Journal of Biological Chemistry 278:46869−77

doi: 10.1074/jbc.M307525200
[18]

Mittler R, Poulos TL. 2005. Ascorbate peroxidase. In Antioxidants and Reactive Oxygen Species in Plants, ed. Smirnoff N. UK: Blackwell Publishing Ltd. pp. 87−100 doi: 10.1002/9780470988565

[19]

Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M. 2004. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. Journal of Molecular Evolution 59:761−70

doi: 10.1007/s00239-004-2666-z
[20]

Teixeira FK, Menezes-Benavente L, Galvão VC, Margis R, Margis-Pinheiro M. 2006. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224:300−14

doi: 10.1007/s00425-005-0214-8
[21]

Najami N, Janda T, Barriah W, Kayam G, Tal M, et al. 2008. Ascorbate peroxidase gene family in tomato: its identification and characterization. Molecular Genetics and Genomics 279:171−82

doi: 10.1007/s00438-007-0305-2
[22]

Tao C, Jin X, Zhu L, Xie Q, Wang X, et al. 2018. Genome-wide investigation and expression profiling of APX gene family in Gossypium hirsutum provide new insights in redox homeostasis maintenance during different fiber development stages. Molecular Genetics and Genomics 293:685−97

doi: 10.1007/s00438-017-1413-2
[23]

Akbudak MA, Filiz E, Vatansever R, Kontbay K. 2018. Genome-wide identification and expression profiling of ascorbate peroxidase (APX) and glutathione peroxidase (GPX) genes under drought stress in sorghum (Sorghum bicolor L.). Journal of Plant Growth Regulation 37:925−36

doi: 10.1007/s00344-018-9788-9
[24]

Liao GL, Liu Q, Li YQ, Zhong M, Huang CH, et al. 2020. Identification and expression profiling analysis of ascorbate peroxidase gene family in Actinidia chinensis (Hongyang). Journal of Plant Research 133:715−26

doi: 10.1007/s10265-020-01206-y
[25]

Raza A, Sharif Y, Chen K, Wang L, Fu H, et al. 2022. Genome-wide characterization of ascorbate peroxidase gene family in peanut (Arachis hypogea L.) revealed their crucial role in growth and multiple stress tolerance. Frontiers in Plant Science 13:962182

doi: 10.3389/fpls.2022.962182
[26]

Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S. 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiology 123:223−34

doi: 10.1104/pp.123.1.223
[27]

Yoshimura K, Miyao K, Gaber A, Takeda T, Kanaboshi H, et al. 2004. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol. The Plant Journal 37:21−33

doi: 10.1046/j.1365-313X.2003.01930.x
[28]

Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce JC, et al. 2019. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nature Communications 10:1994

doi: 10.1038/s41467-019-10082-7
[29]

Tahir H, Sajjad M, Qian M, Zeeshan Ul Haq M, Tahir A, et al. 2024. Glutathione and ascorbic acid accumulation in mango pulp under enhanced UV-B based on transcriptome. Antioxidants 13:1429

doi: 10.3390/antiox13111429
[30]

Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, et al. 2021. Expasy, the Swiss bioinformatics resource portal, as designed by its users. Nucleic Acids Research 49:W216−W227

doi: 10.1093/nar/gkab225
[31]

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, et al. 2018. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research 46:W296−W303

doi: 10.1093/nar/gky427
[32]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43:W39−W49

doi: 10.1093/nar/gkv416
[33]

Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, et al. 2023. The conserved domain database in 2023. Nucleic Acids Research 51:D384−D388

doi: 10.1093/nar/gkac1096
[34]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[35]

Chen Q, Han Z, Jiang H, Tian D, Yang S. 2010. Strong positive selection drives rapid diversification of R-genes in Arabidopsis relatives. Journal of Molecular Evolution 70:137−48

doi: 10.1007/s00239-009-9316-4
[36]

Tahir Ul Qamar M, Sadaqat M, Zhu XT, Li H, Huang X, et al. 2023. Comparative genomics profiling revealed multi-stress responsive roles of the CC-NBS-LRR genes in three mango cultivars. Frontiers in Plant Science 14:1285547

doi: 10.3389/fpls.2023.1285547
[37]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[38]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38:3022−27

doi: 10.1093/molbev/msab120
[39]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[40]

Li B, Zhang L, Zhu L, Cao Y, Dou Z, et al. 2021. HDAC5 promotes intestinal sepsis via the Ghrelin/E2F1/NF-κB axis. The FASEB Journal 35:e21368

doi: 10.1096/fj.202001584R
[41]

Tahir H, Gao Y, Sajjad M, Qian M, Wei L, et al. 2025. A genome-wide analysis of ascorbate oxidase gene family and hormonal activity in mango exposed to enhanced UV-B radiation. BMC Plant Biology 25:1396

doi: 10.1186/s12870-025-07452-3
[42]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79

doi: 10.1038/s41580-022-00499-2
[43]

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98

doi: 10.1016/j.tplants.2004.08.009
[44]

Parvin K, Nahar K, Hasanuzzaman M, Bhuyan MHMB, Mohsin SM, et al. 2020. Exogenous vanillic acid enhances salt tolerance of tomato: insight into plant antioxidant defense and glyoxalase systems. Plant Physiology and Biochemistry 150:109−20

doi: 10.1016/j.plaphy.2020.02.030
[45]

Liu YJ, Yuan Y, Liu YY, Liu Y, Fu JJ, et al. 2012. Gene families of maize glutathione–ascorbate redox cycle respond differently to abiotic stresses. Journal of Plant Physiology 169:183−92

doi: 10.1016/j.jplph.2011.08.018
[46]

Wu B, Li L, Qiu T, Zhang X, Cui S. 2018. Cytosolic APX2 is a pleiotropic protein involved in H2O2 homeostasis, chloroplast protection, plant architecture and fertility maintenance. Plant Cell Reports 37:833−48

doi: 10.1007/s00299-018-2272-y
[47]

Ribeiro CW, Korbes AP, Garighan JA, Jardim-Messeder D, Carvalho FEL, et al. 2017. Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence. Plant Science 263:55−65

doi: 10.1016/j.plantsci.2017.07.009
[48]

Kameoka T, Okayasu T, Kikuraku K, Ogawa T, Sawa Y, et al. 2021. Cooperation of chloroplast ascorbate peroxidases and proton gradient regulation 5 is critical for protecting Arabidopsis plants from photo-oxidative stress. The Plant Journal 107:876−92

doi: 10.1111/tpj.15352
[49]

Wang S, Peng J, Ma J, Xu J. 2016. Protein secondary structure prediction using deep convolutional neural fields. Scientific Reports 6:18962

doi: 10.1038/srep18962
[50]

Numan M, Bukhari SA, Rehman MU, Mustafa G, Sadia B. 2021. Phylogenetic analyses, protein modeling and active site prediction of two pathogenesis related (PR2 and PR3) genes from bread wheat. PLoS One 16:e0257392

doi: 10.1371/journal.pone.0257392
[51]

Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in epigenetic regulation. Nature Structural & Molecular Biology 20:300−7

doi: 10.1038/nsmb.2480
[52]

Maqsood H, Ahad A, Khan S, Gul A, Mehboob M, et al. 2024. Genome engineering in barley. In Targeted Genome Engineering via CRISPR/Cas9 in Plants, ed. Gul A. Amsterdam: Elsevier. pp. 257−72 doi: 10.1016/b978-0-443-26614-0.00007-2

[53]

Sajjad M, Jiao J, Tahir H, Wei L, Ma W, et al. 2025. Genome-wide identification and expression profiling of pyruvate kinase genes in litchi under calcium-magnesium foliar treatment. Plants 14:2764

doi: 10.3390/plants14172764
[54]

Verma D, Upadhyay SK, Singh K. 2022. Characterization of APX and APX-R gene family in Brassica juncea and B. rapa for tolerance against abiotic stresses. Plant Cell Reports 41:571−92

doi: 10.1007/s00299-021-02726-0
[55]

Pražnikar J. 2023. Using graphlet degree vectors to predict atomic displacement parameters in protein structures. Acta Crystallographica Section D, Structural Biology 79:1109−19

doi: 10.1107/S2059798323009142
[56]

Zaman QU, Hussain MA, Khan LU, Hui L, Khan D, et al. 2023. Genome-wide identification and expression profiling of APX gene family under multifactorial stress combinations and melatonin-mediated tolerance in pitaya. Scientia Horticulturae 321:112312

doi: 10.1016/j.scienta.2023.112312
[57]

Li Y, Xiao L, Zhao Z, Zhao H, Du D. 2023. Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L. BMC Genomic Data 24:27

doi: 10.1186/s12863-023-01127-4
[58]

Murat F, Van de Peer Y, Salse J. 2012. Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biology and Evolution 4:917−28

doi: 10.1093/gbe/evs066
[59]

Liang Z, Xu H, Qi H, Fei Y, Cui J. 2024. Genome-wide identification and analysis of ascorbate peroxidase (APX) gene family in hemp (Cannabis sativa L.) under various abiotic stresses. PeerJ 12:e17249

doi: 10.7717/peerj.17249
[60]

Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology 20:38

doi: 10.1186/s13059-019-1650-2
[61]

Aizaz M, Lubna, Jan R, Asaf S, Bilal S, et al. 2024. Regulatory dynamics of plant hormones and transcription factors under salt stress. Biology 13:673

doi: 10.3390/biology13090673
[62]

Raza A, Charagh S, Najafi-Kakavand S, Abbas S, Shoaib Y, et al. 2023. Role of phytohormones in regulating cold stress tolerance: physiological and molecular approaches for developing cold-smart crop plants. Plant Stress 8:100152

doi: 10.1016/j.stress.2023.100152
[63]

Guan Q, Wang Z, Wang X, Takano T, Liu S. 2015. A peroxisomal APX from Puccinellia tenuiflora improves the abiotic stress tolerance of transgenic Arabidopsis thaliana through decreasing of H2O2 accumulation. Journal of Plant Physiology 175:183−91

doi: 10.1016/j.jplph.2014.10.020
[64]

Yan H, Li Q, Park SC, Wang X, Liu YJ, et al. 2016. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiology and Biochemistry 109:20−27

doi: 10.1016/j.plaphy.2016.09.003
[65]

Shafi A, Pal AK, Sharma V, Kalia S, Kumar S, et al. 2017. Transgenic potato plants overexpressing SOD and APX exhibit enhanced lignification and starch biosynthesis with improved salt stress tolerance. Plant Molecular Biology Reporter 35:504−18

doi: 10.1007/s11105-017-1041-3
[66]

Zhou H, Yu L, Liu S, Zhu A, Yang Y, et al. 2023. Transcriptome comparison analyses in UV-B induced AsA accumulation of Lactuca sativa L. BMC Genomics 24:61

doi: 10.1186/s12864-023-09133-7
[67]

Liu P, Li Q, Gao Y, Wang H, Chai L, et al. 2019. A new perspective on the effect of UV-B on L-ascorbic acid metabolism in cucumber seedlings. Journal of Agricultural and Food Chemistry 67:4444−52

doi: 10.1021/acs.jafc.9b00327